摘要:
The invention features a cationic lipid of formula I, an improved lipid formulation comprising a cationic lipid of formula I and corresponding methods of use. Also disclosed are targeting lipids, and specific lipid formulations comprising such targeting lipids.
摘要:
The present invention provides lipids that are advantageously used in lipid particles for the in vivo delivery of therapeutic agents to cells. In particular, the invention provides lipids having the following structures: (Formula (I) or (XXXV)).
摘要:
This invention relates generally to chemically modified oligonucleotides useful for modulating activity of microRNAs and pre-microRNAs. More particularly, the invention relates to single stranded chemically modified oligonucleotides for inhibiting microRNA and pre-microRNA activity and to methods of making and using the modified oligonucleotides.
摘要:
One aspect of the present invention relates to modified nucleosides and oligonucleotides comprising such modified nucleosides. Another aspect of the invention relates to a method of inhibiting the expression of a gene in call, the method comprising (a) contacting an oligonucleotide of the invention with the cell; and (b) maintaining the cell from step (a) for a time sufficient to obtain degradation of the mRNA of the target gene.
摘要:
One aspect of the present invention relates to a double-stranded oligonucleotide comprising at least one ligand tethered to an altered or non-natural nucleobase. In certain embodiments, the non-natural nucleobase is difluorotolyl, nitropyrrolyl, or nitroimidazolyl. In certain embodiments, the ligand is a steroid or aromatic compound. In certain embodiments, only one of the two oligonucleotide strands comprising the double-stranded oligonucleotide contains a ligand tethered to an altered or non-natural nucleobase. In certain embodiments, both of the oligonucleotide strands comprising the double-stranded oligonucleotide independently contain a ligand tethered to an altered or non-natural nucleobase. In certain embodiments, the oligonucleotide strands comprise at least one modified sugar moiety. Another aspect of the present invention relates to a single-stranded oligonucleotide comprising at least one ligand tethered to an altered or non-natural nucleobase. In certain embodiments, the non-natural nucleobase is difluorotolyl, nitropyrrolyl, or nitroimidazolyl. In certain embodiments, the ligand is a steroid or aromatic compound. In certain embodiments, the ribose sugar moiety that occurs naturally in nucleosides is replaced with a hexose sugar, polycyclic heteroalkyl ring, or cyclohexenyl group. In certain embodiments, at least one phosphate linkage in the oligonucleotide has been replaced with a phosphorothioate linkage.
摘要:
The invention features a cationic lipid of formula I, an improved lipid formulation comprising a cationic lipid of formula I and corresponding methods of use. Also disclosed are targeting lipids, and specific lipid formulations comprising such targeting lipids.
摘要:
One aspect of the present invention relates to a double-stranded oligonucleotide comprising at least one non-natural nucleobase. In certain embodiments, the non-natural nucleobase is difluorotolyl, nitroindolyl, nitropyrrolyl, or nitroimidazolyl. In a preferred embodiment, the non-natural nucleobase is difluorotolyl. In certain embodiments, only one of the two oligonucleotide strands comprising the double-stranded oligonucleotide contains a non-natural nucleobase. In certain embodiments, both of the oligonucleotide strands comprising the double-stranded oligonucleotide independently contain a non-natural nucleobase. In certain embodiments, the oligonucleotide strands comprise at least one modified sugar moiety. Another aspect of the present invention relates to a single-stranded oligonucleotide comprising at least one non-natural nucleobase. In a preferred embodiment, the non-natural nucleobase is difluorotolyl. In certain embodiments, the ribose sugar moiety that occurs naturally in nucleosides is replaced with a hexose sugar, polycyclic heteroalkyl ring, or cyclohexenyl group. In certain embodiments, at least one phosphate linkage in the oligonucleotide has been replaced with a phosphorothioate linkage.
摘要:
The invention relates to iRNA agents, which preferably include a monomer in which the ribose moiety has been replaced by a moiety other than ribose. The inclusion of such a monomer can allow for modulation of a property of the iRNA agent into which it is incorporated, e.g., by using the non-ribose moiety as a point to which a ligand or other entity, e.g., a carbohydrate; or a steroid, e.g., cholesterol, which is optionally substituted with at least one carbohydrate. is directly, or indirectly, tethered. The invention also relates to methods of making and using such modified iRNA agents.
摘要:
The invention relates to iRNA agents, which preferably include a monomer in which the ribose moiety has been replaced by a moiety other than ribose that further includes a tether having one or more linking groups, in which at least one of the linking groups is a cleavable linking group. The tether in turn can be connected to a selected moiety, e.g., a ligand, e.g., a targeting or delivery moiety, or a moiety which alters a physical property. The cleavable linking group is one which is sufficiently stable outside the cell such that it allows targeting of a therapeutically beneficial amount of an iRNA agent (e.g., a single stranded or double stranded iRNA agent), coupled by way of the cleavable linking group to a targeting agent—to targets cells, but which upon entry into a target cell is cleaved to release the iRNA agent from the targeting agent.
摘要:
The present invention provides targeting lipids of structure L100—linker—L101 (CI), where L100 is a lipid, lipophile, alkyl, alkenyl or alkynyl, L101 is a ligand or —CH2CH2(OCH2CH2)pO(CH2)qCH2-ligand, p is 1-1000, and q is 1-20. In addition, the invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo.