摘要:
A magnetic memory includes two first magnetic layers each oriented over a substrate, a second magnetic layer interposing the two first magnetic layers, and two dielectric layers each contacting the second magnetic layer and interposing the second magnetic layer and one of the two first magnetic layers. Each of the first and second magnetic layers and the dielectric layers may be oriented substantially perpendicular to the substrate or at an acute angle relative to the substrate.
摘要:
A damascene structure and process at semiconductor substrate level. A pre-metal dielectric layer is provided on a semiconductor substrate with an opening exposing a contact region on the substrate. A buffer metal layer is provided on the exposed contact region, and a barrier layer is provided on the interior of the opening. A conductor is provided on the buffer metal layer, substantially filling the opening to electrically connect to the contact region.
摘要:
A semiconductor device includes a source and a drain formed in a substrate, a tunneling dielectric formed on the substrate between the source and the drain, and a floating gate disposed over the tunneling dielectric having a band-gap energy less than the energy band-gap of silicon.
摘要:
A magnetic memory includes two first magnetic layers each oriented over a substrate, a second magnetic layer interposing the two first magnetic layers, and two dielectric layers each contacting the second magnetic layer and interposing the second magnetic layer and one of the two first magnetic layers. Each of the first and second magnetic layers and the dielectric layers may be oriented substantially perpendicular to the substrate or at an acute angle relative to the substrate.
摘要:
A megasonic immersion lithography exposure apparatus and method for substantially eliminating microbubbles from an exposure liquid in immersion lithography is disclosed. The apparatus includes an optical system for projecting light through a mask and onto a wafer. An optical transfer chamber is provided adjacent to the optical system for containing an exposure liquid. At least one megasonic plate operably engages the optical transfer chamber for inducing sonic waves in and eliminating microbubbles from the exposure liquid.
摘要:
An immersion optical projection system for photolithography is provided. A transparent plate is located between a last lens element and the wafer during a usage of the system. The transparent plate has a lens-side surface and a wafer-side surface. The system is adapted to have a layer of lens-side fluid located between the last lens element and the lens-side surface of the transparent plate, e.g., when the last lens element is operably located over the wafer during a photolithography process. The system is also adapted to have a layer of wafer-side fluid located between the wafer-side surface of the transparent plate and the wafer, during a usage of the system. The wafer-side fluid may or may not be fluidly connected to the lens-side fluid. The wafer-side fluid may or may not differ from the lens-side fluid.
摘要:
Composite ALD-formed diffusion barrier layers. In a preferred embodiment, a composite conductive layer is composed of a diffusion barrier layer and/or a low-resistivity metal layer formed by atomic layer deposition (ALD) lining a damascene opening in dielectrics, serving as diffusion blocking and/or adhesion improvement. The preferred composite diffusion barrier layers are dual titanium nitride layers or dual tantalum nitride layers, triply laminar of tantalum, tantalum nitride and tantalum-rich nitride, or tantalum, tantalum nitride and tantalum, formed sequentially on the opening by way of ALD.
摘要:
Provided is a semiconductor transistor device including a substrate having at least two regions, a semiconductive region extending to a first surface of the substrate and an insulative region extending to a second surface of the substrate. The semiconductor transistor device also includes a patterned semiconductor structure overlying both surfaces of the substrate. The patterned semiconductor structure includes a source or drain region overlying the second surface of the substrate. The semiconductor transistor device further includes a patterned gate structure overlying the patterned semiconductor structure.
摘要:
The method of the present invention includes the steps of forming doped regions in the semiconductor substrate. A pad oxide layer is formed on the semiconductor substrate. A masking layer is formed on the pad oxide layer. A masking layer, the pad oxide layer and the semiconductor substrate are patterned to form a trench therein. A gap-filling material is refilled into the trench and over the semiconductor substrate. A portion of the gap-filling material is removed to an upper surface of the masking layer. Next step is to remove the masking layer. A first conductive layer is formed along the surface of the substrate, then removing a portion of the first conductive layer to expose an upper surface of the gap-filling material. An inter polysilicon dielectric layer is formed on the first conductive layer and a second conductive layer is formed on the inter polysilicon dielectric layer.
摘要:
A nonvolatile memory device with a reduced size floating gate and an increased coupling ratio is disclosed. The nonvolatile memory device includes two isolation structures protruding above a semiconductor substrate. Two dielectric spacers are disposed on a pair of opposing sidewalls of the two isolation structures. The two dielectric spacers are spaced from one another at a distance that defines a gate width which is beyond lithography limit. A tunnel dielectric and a floating gate are provided on substrate and confined between the two dielectric spacers. The floating gate has a smaller bottom surface area relative to its top surface area and has a surface substantially coplanar with a surface of the isolation structures. On the coplanar surface, an inter-gate dielectric and a control gate are provided. Optionally, a lightly doped region is provided beside the floating gate 118 and within the substrate. A manufacturing method for forming such memory device is also disclosed.