Abstract:
A method and apparatus for decoding a video and a method and apparatus for encoding a video are provided. The method for decoding the video includes: receiving and parsing a bitstream of an encoded video; extracting, from the bitstream, encoded image data of a current picture of the encoded video assigned to a maximum coding unit, and information about a coded depth and an encoding mode according to the maximum coding unit; and decoding the encoded image data for the maximum coding unit based on the information about the coded depth and the encoding mode for the maximum coding unit, in consideration of a raster scanning order for the maximum coding unit and a zigzag scanning order for coding units of the maximum coding unit according to depths.
Abstract:
An apparatus for decoding an image includes an encoding information extractor which extracts split information indicating whether to split a coding unit of an upper depth into coding units of deeper depths and skip information indicating whether a prediction mode of a current coding unit is a skip mode, from image data and a decoding unit which determines a split structure of a maximum coding unit, according to the split information so that the maximum coding unit is hierarchically split as a depth increases and determines whether the prediction mode of the current coding unit is the skip mode according to the skip information.
Abstract:
An apparatus for decoding an image includes an encoding information extractor which extracts split information indicating whether to split a coding unit of an upper depth into coding units of deeper depths and skip information indicating whether a prediction mode of a current coding unit is a skip mode, from image data and a decoding unit which determines a split structure of a maximum coding unit, according to the split information so that the maximum coding unit is hierarchically split as a depth increases and determines whether the prediction mode of the current coding unit is the skip mode according to the skip information.
Abstract:
A Computer-Aided Diagnosis (CAD) apparatus for correctly detecting a nodule is provided. The CAD apparatus includes an input device for receiving a first image captured by emitting X-rays towards a user and a second image that is discriminated from the first image and is an image of the user; an information acquisition device for acquiring a bone model of the user by using the second image; and a CAD device for compensating for the first image by using the bone model.
Abstract:
A method of decoding an image including performing entropy-decoding to obtain quantized transformation coefficients of at least one transformation unit in a coding unit of the image, performing inverse-quantization and inverse-transformation on the quantized transformation coefficients of the at least one transformation unit to obtain residuals, and performing inter prediction for at least one prediction unit in the coding unit to generate a predictor and restoring the image by using the residuals and the predictor.
Abstract:
An apparatus for decoding an image includes an entropy decoder that performs entropy-decoding to obtain quantized transformation coefficients of at least one transformation unit in a coding unit of the image, an inverse transformer that performs inverse-quantization and inverse-transformation on the quantized transformation coefficients of the at least one transformation unit to obtain residuals, and a restorer that performs inter prediction for at least one prediction unit in the coding unit to generate a predictor and restores the image by using the residuals and the predictor.
Abstract:
An image decoding method including determining coding units having a hierarchical structure for decoding an image using split information of a coding unit, determining at least one prediction unit for predicting a coding unit among the coding units using information about a partition type, and determining at least one transformation unit for inversely transforming the coding unit using information about a depth of the at least one transformation unit, wherein the split information of a coding unit, the information about a partition type and the information about a depth of the at least one transformation unit are parsed from a bitstream, parsing from the bitstream transformation coefficients generated by transformation according to the at least one transformation unit generated by dividing the coding unit, and reconstructing residual of the at least one transformation unit by performing inverse quantization, and inverse transformation on the parsed transformation coefficients, and performing intra prediction or inter prediction on the prediction unit to generate a predictor, and reconstructing the image based on the residual and the predictor.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
A method of decoding an image includes performing entropy-decoding to obtain quantized transformation coefficients of at least one transformation unit in a coding unit of the image, determining a prediction mode of at least one prediction unit in the coding unit from information indicating a prediction mode for the at least one prediction unit, when the prediction mode is determined to be an inter prediction mode, not in an intra prediction mode, determining a size of the at least one transformation unit in the coding unit regardless of a size of the at least one prediction unit in the coding unit, performing inverse-quantization and inverse-transformation on the quantized transformation coefficients of the at least one transformation unit to obtain residuals, and performing inter prediction for at least one prediction unit in the coding unit to generate a predictor and restoring the image by using the residuals and the predictor.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.