Abstract:
Provided are a hardmask composition and a method of forming a fine pattern using the hardmask composition, the hardmask composition including a solvent, a 2D carbon nanostructure (and/or a derivative thereof), and a 0D carbon nanostructure (and/or a derivative thereof).
Abstract:
A hardmask composition includes a first material including one of an aromatic ring-containing monomer and a polymer containing a repeating unit including an aromatic ring-containing monomer, a second material including at least one of a hexagonal boron nitride and a precursor thereof, a chalcogenide-based material and a precursor thereof, and a two-dimensional carbon nanostructure and a precursor thereof, the two-dimensional carbon nanostructure containing about 0.01 atom % to about 40 atom % of oxygen, and a solvent.
Abstract:
Example embodiments relate to a method of preparing a two-dimensional (2D) transition metal chalcogenide nanostructure, the method including preparing a 2D transition metal chalcogenide nanostructure by a reaction between a transition metal precursor and a chalcogen precursor in a composition including a solvent, wherein the chalcogen precursor is a compound including a first bond connecting two neighboring chalcogen elements and the second bond connecting one of the two neighboring chalcogen elements and a hetero-element adjacent thereto, and binding energy of the second bond is 110% or less of the binding energy of the first bond, a 2D transition metal chalcogenide nanostructure prepared thereby, and a device including the 2D transition metal chalcogenide nanostructure.
Abstract:
An electronic device includes first and second electrodes that are spaced apart from each other and a 2D material layer. The 2D material layer connects the first and second electrodes. The 2D material layer includes a plurality of 2D nanomaterials. At least some of the 2D nanomaterials overlap one another.
Abstract:
A triboelectric generator includes first and second electrodes spaced apart from each other, a first charging object on a surface of the first electrode facing the second electrode, a second charging object provided between the first charging object and the second electrode, and a grounding unit configured to intermittently interconnect the second charging object and a charge reservoir due to motion of the second charging object. The first charging object is configured to be positively charged due to contact. The second charging object is configured to be negatively charged due to contact.
Abstract:
Example embodiments relate to optoelectronic devices. An optoelectronic device may include a photoactive layer between first and second electrodes, and a ferroelectric layer corresponding to at least one of the first and second electrodes. At least one of the first and second electrodes may include graphene. The photoactive layer may include a two-dimensional (2D) semiconductor. The optoelectronic device may further include a third electrode, and in this case, the ferroelectric layer may be between the second electrode and the third electrode. The second electrode, the ferroelectric layer, and the third electrode may constitute a nanogenerator.
Abstract:
Provided are a composition for forming a layered transition metal chalcogenide compound layer and a method of forming a layered transition metal chalcogenide compound layer by using the composition. The composition includes at least one of a transition metal precursor represented by Formula 1 and a chalcogenide precursor represented by Formula 2. Ma(R1)6-b-c(H)b(R2)c [Formula 1] wherein, in Formula 1, M, R1, R2, a, b, and c are the same as defined in the detailed description, and M′kX2 [Formula 2] wherein, in Formula 2, M′ and X are the same as defined in the detailed description.
Abstract:
A method of pre-treating a substrate on which graphene will be directly formed may include pre-treating the substrate using a pre-treatment gas including at least a carbon source and hydrogen.
Abstract:
A semiconductor device according to an embodiment may include a substrate, an adhesive layer, and a semiconductor layer. The semiconductor layer includes a 2D material having a layered structure. The adhesive layer is interposed between the substrate and the semiconductor layer, and has adhesiveness to a 2D material.
Abstract:
An interconnect structure and an electronic apparatus including the interconnect structure are provided. The interconnect structure includes a conductive layer; a dielectric layer configured to surround at least a part of the conductive layer; and a diffusion barrier layer disposed between the conductive layer and the dielectric layer and configured to limit and/or prevent a conductive material of the conductive layer from diffusing into the dielectric layer, and at least one of the dielectric layer and the diffusion barrier layer includes a boron nitride layer of a low dielectric constant.