Abstract:
A method of reducing bow and/or improving the electrical performance of an aluminum back contacted silicon solar cell includes applying to a silicon wafer substrate a paste including aluminum and an organometallic compound, and firing the substrate. The organometallic compound is a C1 to C30 organometallic compound of a metal selected from the group consisting of Ag, Al, Ba, Bi, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Nd, Ni, Sb, Si, Sn, Sr, Ta, V, Zn, Zr. A paste is formed having an exothermic reaction peak at a temperature of at least 300° C. to less than 660° C.
Abstract:
Solar cell contacts having good electrical performance are made by a process involving: (a) providing a silicon wafer substrate; (b) providing a paste comprising: (i) aluminum, (ii) glass frit, and (iii) a separate and distinct amount of at least one oxide, such that, together with the aluminum, the glass frit and oxide forms a paste having an exothermic reaction peak, at a temperature of at least 660° C. to less than 900° C., (c) applying the paste to the silicon wafer substrate to form a coated substrate, and (d) firing the coated substrate for a time and at a temperature sufficient to sinter the aluminum and fuse the glass frit and oxide.
Abstract:
A mask for masking a stent during a coating procedure may include a mask body that has a negative pattern or an approximate negative pattern of a stent pattern being masked by the mask body. An apparatus for selectively coating a predetermined portion of a medical article may include a dispenser of a coating composition, a mask, a device for creating a relative movement between the mask and the medical article.
Abstract:
Formulations and methods of making solar cells are disclosed. In general, the invention provides a solar cell comprising a contact made from a mixture wherein, prior to firing, the mixture comprises at least one aluminum source, at least one boron source, and about 0.1 to about 10 wt % of a glass component. Within the mixture, the overall content of aluminum is about 50 wt % to about 85 wt % of the mixture, and the overall content of boron is about 0.05 to about 20 wt % of the mixture.
Abstract:
Formulations and methods of making solar cells are disclosed. In general, the invention provides a solar cell comprising a contact made from a mixture wherein, prior to firing, the mixture comprises at least one aluminum source, at least one boron source, and about 0.1 to about 10 wt % of a glass component. Within the mixture, the overall content of aluminum is about 50 wt % to about 85 wt % of the mixture, and the overall content of boron is about 0.05 to about 20 wt % of the mixture.
Abstract:
Systems, apparatus and methods are provided to apply barrier and/or lubricant materials onto the interior surface of a container, such systems including a container having a chamber; a gas supply source for supplying monomer gas through a gas inlet duct having a portion extending into the chamber; a photolysis source and/or pyrolyzing surface for photolyzing and/or pyrolyzing at least a portion of the monomer gas to form a reactive gas comprising at least one reactive moiety; optionally a temperature controller for maintaining the interior surface of the container at a temperature which is less than the temperature of the pyrolyzing surface to facilitate deposition and polymerization of the reactive moiety on the interior surface of the container; and an outlet duct at the open end or a second end of the container for removing excess reactive gas from the chamber.
Abstract:
Hot-melt sealing glass compositions that include one or more glass frits dispersed in a polymeric binder system. The polymeric binder system is a solid at room temperature, but melts at a temperature of from about 35° C. to about 90° C., thereby forming a flowable liquid dispersion that can be applied to a substrate (e.g., a cap wafer and/or a device wafer of a MEMS device) by screen printing. Hot-melt sealing glass compositions according to the invention rapidly re-solidify and adhere to the substrate after being deposited by screen printing. Thus, they do not tend to spread out as much as conventional solvent-based glass frit bonding pastes after screen printing. And, because hot-melt sealing glass compositions according to the invention are not solvent-based systems, they do not need to be force dried after deposition.
Abstract:
Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.
Abstract:
Formulations and methods of making semiconductor devices and solar cell contacts are disclosed. The invention provides a method of making a semiconductor device or solar cell contact including ink-jet printing onto a silicon wafer an ink composition, typically including a high solids loading (20-80 wt %) of glass fit and preferably a conductive metal such as silver. The wafer is then fired such that the glass frit fuses to form a glass, thereby forming a contact layer to silicon.