Abstract:
The image sensing device includes a pixel region in a pixel array area and a dummy pixel region in a periphery area. The pixel region includes a radiation region, a floating diffusion region, a transfer transistor, a source-follower transistor, a reset transistor and a select transistor. The dummy pixel region includes a radiation region and a floating diffusion region. A gate of one of the transfer transistor, the reset transistor and the select transistor in the pixel region is electrically connected to the radiation region or the floating diffusion region in the dummy pixel region.
Abstract:
The present disclosure relates to a CMOS image sensor having a doped region, arranged between deep trench isolation structures and an image sensing element, and an associated method of formation. In some embodiments, the CMOS image sensor has a pixel region disposed within a semiconductor substrate. The pixel region has an image sensing element configured to convert radiation into an electric signal. A plurality of back-side deep trench isolation (BDTI) structures extend into the semiconductor substrate on opposing sides of the pixel region. A doped region is laterally arranged between the BDTI structures and separates the image sensing element from the BDTI structures and the back-side of the semiconductor substrate. Separating the image sensing element from the BDTI structures prevents the image sensing element from interacting with interface defects near edges of the BDTI structures, and thereby reduces dark current and white pixel number.
Abstract:
A semiconductor device includes a substrate, light sensing devices, at least one infrared radiation sensing device, a transparent insulating layer, an infrared radiation cut layer, a color filter layer and an infrared radiation color filter layer. The light sensing devices and the at least one infrared radiation sensing device are disposed in the substrate and are adjacent to each other. The transparent insulating layer is disposed on the substrate overlying the light sensing devices and the at least one infrared radiation sensing device. The infrared radiation cut layer is disposed on the transparent insulating layer overlying the light sensing devices for filtering out infrared radiation and/or near infrared radiation. The color filter layer is disposed on the infrared radiation cut layer. The infrared radiation color filter layer is disposed on the transparent insulating layer overlying the at least one infrared radiation sensing device.
Abstract:
In some embodiments, the present disclosure relates to a method of forming a back-side image (BSI) sensor. The method may be performed by forming an image sensing element within a substrate and forming a pixel-level memory node at a position within the substrate that is laterally offset from the image sensing element. A back-side of the substrate is etched to form one or more trenches that are laterally separated from the image sensing element by the substrate and that vertically overlie the pixel-level memory node. A reflective material is formed within the one or more trenches.
Abstract:
The present disclosure relates to an integrated circuit, and an associated method of formation. In some embodiments, the integrated circuit comprises a deep trench grid disposed at a back side of a substrate. A passivation layer lines the deep trench grid within the substrate. The passivation layer includes a first high-k dielectric layer and a second high-k dielectric layer disposed over the first high-k dielectric layer. A first dielectric layer is disposed over the passivation layer, lining the deep trench grid and extending over an upper surface of the substrate. A second dielectric layer is disposed over the first dielectric layer and enclosing remaining spaces of the deep trench grid to form air-gaps at lower portions of the deep trench grid. The air-gaps are sealed by the first dielectric layer or the second dielectric layer below the upper surface of the substrate.
Abstract:
The present disclosure relates to a multi-dimensional integrated chip having a redistribution layer vertically extending between integrated chip die, which is laterally offset from a back-side bond pad. The multi-dimensional integrated chip has a first integrated chip die with a first plurality of metal interconnect layers disposed within a first inter-level dielectric layer arranged onto a front-side of a first semiconductor substrate. The multi-dimensional integrated chip also has a second integrated chip die with a second plurality of metal interconnect layers disposed within a second inter-level dielectric layer abutting the first ILD layer. A bond pad is disposed within a recess extending through the second semiconductor substrate. A redistribution layer vertically extends between the first plurality of metal interconnect layers and the second plurality of metal interconnect layers at a position that is laterally offset from the bond pad.
Abstract:
A semiconductor image sensor device having a negatively-charged layer includes a semiconductor substrate having a p-type region, a plurality of radiation-sensing regions in the p-type region proximate a front side of the semiconductor substrate, and a negatively-charged layer adjoining the p-type region proximate the plurality of radiation-sensing regions. The negatively-charged layer may be an oxygen-rich silicon oxide, a high-k metal oxide, or a silicon nitride formed as a liner in a shallow trench isolation feature, a sidewall spacer or an offset spacer of a transistor gate, a salicide-block layer, a buffer layer under a salicide-block layer, a backside surface layer, or a combination of these.
Abstract:
A pad structure for a complementary metal-oxide-semiconductor (CMOS) image sensor is provided. A semiconductor substrate is arranged over a back end of line (BEOL) metallization stack, and comprises a scribe line opening. A buffer layer lines the scribe line opening. A conductive pad comprises a base region and a protruding region. The base region is arranged over the buffer layer in the scribe line opening, and the protruding region protrudes from the base region into the BEOL metallization stack. A dielectric layer fills the scribe line opening over the conductive pad, and is substantially flush with an upper surface of the semiconductor substrate. Further, a method for manufacturing the pad structure, as well as the CMOS image sensor, are provided.
Abstract:
Some embodiments relate to a three-dimensional (3D) integrated circuit (IC). The 3DIC includes a first substrate including a photodetector which is configured to receive light in a first direction from a light source. An interconnect structure is disposed over the first substrate, and includes a plurality of metal layers and insulating layers that are over stacked over one another in alternating fashion. One of the plurality of metal layers is closest to the light source and another of the plurality of metal layers is furthest from the light source. A bond pad recess extends into the interconnect structure from an opening in a surface of the 3DIC which is nearest the light source and terminates at a bond pad. The bond pad is spaced apart from the surface of the 3DIC and is in direct contact with the one of the plurality of metal layers that is furthest from the light source.
Abstract:
Embodiments of mechanisms for forming an image sensor device are provided. The image sensor device includes a semiconductor substrate and one photodetector formed in the semiconductor substrate. The image sensor device also includes one gate stack formed over the semiconductor substrate. The gate stack includes multiple polysilicon layers.