Abstract:
An optical probe which comprises a substrate, an elastic body supported by the substrate and having a free end, a projection having a micro-aperture and arranged at the free end of the elastic body, and a refractive index micro-lens also arranged at the free end of the elastic body and adapted to focus light to the micro-aperture.
Abstract:
A microprobe chip for detecting evanescent waves includes a photoconductive material and a substrate for supporting the photoconductive material. The photoconductive material is connected to electrodes formed on the substrate. A method for making a microprobe chip for detecting evanescent waves includes forming a film comprising a photoconductive material on a peeling layer of a first substrate, the film having a shape of the microprobe chip, and transferring the film on the peeling layer onto a junction layer provided on a second substrate. A method for making a probe provided with a microprobe chip for detecting evanescent waves includes forming a film comprising a photoconductive material and having the shape of the microprobe chip on a peeling layer of a first substrate, forming a thin film cantilever on a second substrate, and transferring the film on the peeling layer onto a junction layer formed on the thin film cantilever.
Abstract:
A light deflection device includes a deflection member having a sphere body enclosing a deflection face portion for deflecting a light beam, or a segmental sphere body having the deflection face portion and a segmental sphere face opposing to the deflection face portion. The device also includes a supporting member for supporting the deflection member in a turnable manner, and a driver for turning the deflection member. The driver is provided on the sphere face of the deflection member, and at a position opposing the sphere face or the segmental sphere face of the deflection member to apply a driving force to the sphere face or the segmental face. In one embodiment, a light deflection device array includes the arrangement of light deflection devices in a one-dimensional or two-dimensional array.
Abstract:
A microstructure comprising a substrate (1), a patterned structure (beam member) (2) suspended over the substrate (1) with an air-space (4) therebetween and supporting structure (3) for suspending the patterned structure (2) over the substrate (1). The microstructure is prepared by using a sacrificial layer (7) which is removed to form the space between the substrate (1) and the patterned structure (2) adhered to the sacrificial layer. In the case of using resin as the material of the sacrificial layer, the sacrificial layer can be removed without causing sticking, and an electrode can be provided on the patterned structure. The microstructure can have application as electrostatic actuator, etc., depending on choice of shape and composition.
Abstract:
An air bridge type structure of a bridge shape which joins to a substrate or micro-structure is manufactured by forming an air bridge type structure on a first substrate and transferring the air bridge type structure to a second substrate and/or a micro-structure formed on the second substrate. A mold substrate, comprising a recessed portion provided on the surface of the mold substrate and a peeling layer formed on the recessed portion, is used for formation of the air bridge type structure. A micro-structure can be supported by the air bridge type structure, for example, a probe for detecting tunneling current or micro-force, supported by the air bridge type structure. Accordingly, electrical connection between structures and the substrate or between the structures one to another can be performed, even if there is undercutting underneath the structures. Film stress generated upon formation of air bridge type structures can be avoided, and increasing of productivity and lowering of costs can be simultaneously achieved.
Abstract:
There is provided a microstructure comprising a substrate, support members, a lever and an electrode formed on the lever is characterized in that said support members support said substrate and said beam and/or the electrode section with a void interposed therebetween and an electrode is formed on the lower surface of said beam. There are also provided a method of forming such a microstructure and an electrostatic actuator having a beam that is displaced by applying a voltage to the electrodes of the actuator.
Abstract:
A micro-tip for detecting tunneling current, micro force or magnetic force is manufactured as follows. A recess portion is formed on the surface of a first substrate. A peeling layer are formed on the substrate including the recess of the first substrate. A micro-tip is formed on the peeling layer of the first substrate. A joining layer is formed on a second substrate. The micro-tip on the peeling layer including the recess in the first substrate is transferred onto the joining layer on the second substrate. The peeling layer mainly consists of an oxide or a nitride, of a metal element, a semi-metal element or a semiconductor element.
Abstract:
A micro-tip is manufactured by forming a recess portion on a first substrate consisting of monocrystalline silicon for forming a tip. A peeling layer is formed on the recess portion, and contact layer is formed on at least a portion other than the peeling layer on the substrate. A tip material layer is formed on the peeling layer and the contact layer. The tip material layer on the peeling layer is transferred onto a second substrate.
Abstract:
An electrostatic actuator includes a movable plate arranged on a substrate through a gap, a movable electrode arranged on the movable plate, and a fixed electrode arranged on the substrate to oppose the movable electrode. The movable electrode and the fixed electrode are arranged not to overlap at any portion in a direction perpendicular to a surface of the fixed electrode. The movable electrode and the fixed electrode have comb-like shapes.
Abstract:
An anode bonding method for bonding a first substrate and a second substrate, both of which have a recessed portion, includes the steps of heating the first and second substrates in a stacked state; and bonding the substrates by applying a voltage between the substrates.