Abstract:
The present disclosure relates to antimicrobial polymers which impart prolonged antimicrobial activity to a surface or in a solution, the polymers comprising as repeating monomers a polymerizable cyclic moiety forming part of the polymer backbone and an anti-microbial moiety such as a quaternary ammonium moiety in the side chain. The polymer may further comprise polymerizable units of at least one unsaturated monomer having an ethylenically unsaturated double or triple bond.
Abstract:
The present invention describes methods of treating cellulosic materials with a composition that provides increased hydrophobicity to such materials without sacrificing the biodegradability thereof. The methods as disclosed provide for esterification of available hydroxyl groups on cellulosic materials, where such hydroxyl groups are “masked” by bulky organic chains, including that the disclosure provides products made by such methods. The materials thus treated display higher hydrophobicity, barrier function, and mechanical properties, and may be used in any application where such features are desired.
Abstract:
The present invention relates to a blister package (1) consisting of a lower web in which a row of cavities (3) is provided, and an upper web (12) which is welded to the provided lower web, and wherein perforation lines (7) are provided between adjoining cavities, and wherein there is an area (6) in connection with each cavity where the upper web is not welded to the lower web, such that a snip is created, said upper web being welded to the lower web by a first inner weld (4) which surrounds the cavity completely, as well as a second outer weld (5) which surrounds the cavity around the first weld and adjoins the area where the upper web is not welded to the lower web. The invention also relates to a method of making the blister package.
Abstract:
Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package includes a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. A light transmission through the coated pharmaceutical package may be greater than or equal to about 55% of a light transmission through an uncoated pharmaceutical package for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
A method of preparing a treated article comprises the step of providing a slurry comprising fibers. The method further comprises the step of combining the slurry and a first fluorinated composition to form a mixture. In addition, the method comprises the step of forming at least one sheet from the mixture. Finally, the method comprises the step of applying a second fluorinated composition on at least one surface of the at least one sheet to prepare the treated article.
Abstract:
A process for providing indicia and an elastic-like behavior to a web substrate is disclosed. The process comprises the steps of: providing a web substrate; printing indicia on the web substrate; and, providing the web substrate with a plurality of first regions and a plurality of second regions comprising the same material composition. A portion of the first regions extend in a first direction while the remainder of the first regions extend in a second direction perpendicular to the first direction to intersect one another. The first regions form a boundary completely surrounding the second regions. The second regions comprise a plurality of raised rib-like elements. The first regions undergo a molecular level and geometric deformation and the second regions initially undergo a substantially geometric deformation when the web material is subjected to an applied elongation along at least one axis.
Abstract:
In a packaging pouch made of a flexible mono or multilayer film for packaging viscous jelly and/or gravy matrix food, in which a thermo cycle such as retort, pasteurization, hot filling or aseptic conditions are applicable, the surface of a layer of the film forming the pouch inner walls or a surface coating on the film being in contact with food comprises a substance having the effect that the surface tension of the layer or the surface coating on the layer is 24 mN/m or less and the pouch inner walls being in contact with food exhibit easy flow properties.
Abstract:
The present invention relates to a food packaging material for packing food, more particularly to a food packaging material having a uniform coating of oil, a method of manufacturing the same, and a mold for manufacturing the same. The food packaging material includes a plurality of grooves formed on one surface of the food packaging material; and an oil layer uniformly applied to the one surface of the food packaging material, being put into the grooves. According to the present invention, there are provided a food packaging material which continuously maintains a uniform coating of oil and thus minimizes sticking of contents to a surface of the packaging material, a method of manufacturing the same, and a mold for manufacturing the same.
Abstract:
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container with resistance to delamination and improved strength may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The glass container may further include a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa.
Abstract:
The invention relates to a method for producing a coated packaging material (10), wherein at least the following steps are carried out: a) providing a substrate (12), which has a base material (14) made of cellulose, an outside (16) to face away from a good to be packaged, and an inside (18) to face the good to be packaged; b) coating the inside (18) of the substrate with at least one layer of an aqueous composition, which comprises at least polyvinyl alcohol and a cross-linking agent and has a solid content of at most 25 wt %; and c) drying the layer and cross-linking the polyvinyl alcohol by means of the cross-linking agent in order to form a barrier layer (22a, 22b) for hydrophobic compounds. The invention further relates to a packaging material (10) having at least one barrier layer (22a, 22b) for hydrophobic compounds.