Abstract:
The present invention relates to a filtering unit at least partially filled with particles agglomerated from fine-particle iron oxide and/or iron oxyhydroxide by producing an aqueous suspension of fine-particle iron oxides and/or iron oxyhydroxides having a BET surface area of 50 to 500 m2/g, and removing the water and dissolved constituents by a set of washing drying and filtering steps and processes of using the particles.
Abstract:
A general, reproducible, and simple synthetic method that employs readily available chemicals permits control of the size, shape, and size distribution of metal oxide nanocrystals. The synthesis entails reacting a metal fatty acid salt, the corresponding fatty acid, and a hydrocarbon solvent, with the reaction product being pyrolyzed to the metal oxide. Nearly monodisperse oxide nanocrystals of Fe3O4, Cr2O3, MnO, Co3O4, NiO, ZnO, SnO2, and In2O3, in a large size range (3-50 nm), are described. Size and shape control of the nanocrystals is achieved by varying the reactivity and concentration of the precursors.
Abstract translation:使用容易获得的化学品的一般的,可重现的和简单的合成方法允许控制金属氧化物纳米晶体的尺寸,形状和尺寸分布。 合成需要使金属脂肪酸盐,相应的脂肪酸和烃溶剂反应,反应产物被热解成金属氧化物。 描述了大尺寸范围(3-50nm)中的Fe 3 O 4,Cr 2 O 3,MnO,Co 3 O 4,NiO,ZnO,SnO 2和In 2 O 3的近似单分散氧化物纳米晶体。 通过改变前体的反应性和浓度来实现纳米晶体的尺寸和形状控制。
Abstract:
A precursor particle having a particle size of 10 nm or more and 1 μm or less, and comprising a first compound selected from an alkoxide, a hydroxide, a sulfate, a nitrate, a carbonate, or a carboxylate of magnetic metal containing at least one metal of Fe and Co, and a second compound selected from an alkoxide or a hydroxide, a sulfate, a nitrate, a carbonate, or a carboxylate of a metal element for forming an oxide, is prepared. Then the precursor particle is heated in a reducing atmosphere to form an insulating particle made of an oxide of the metal element by decomposing the second compound, and to precipitate a particle of the magnetic metal in the insulating particle at a particle size of 1 nm or more and 100 nm or less, thereby manufacturing a high frequency magnetic material.
Abstract:
Highly pure iron oxides are prepared by reaction of metallic iron, in the form of microspheroidal particles or of scraps or cuttings, with an agitated aqueous solution of a mono- or polycarboxylic acid with a pKa of 0.5 to 6 relative to the first carboxyl and capable of decomposing, by heating in air at 200 to 350 ° C., to carbon dioxide and water, using 0.03 to 1.5 moles of acid per g-atoms of iron, a water/iron weight ration of 1 to 20, and by oxidation of the ferrous carboxilate to ferric salt, with an agent selected from oxygen, mixtures containing oxygen, hydrogen peroxide, organic peroxides and hydroperoxides.
Abstract:
A method for manufacturing of iron- respectively micro-alloyed steel powders, starting from fluffy spray roasted iron oxides exhibiting a specific surface area in excess of 2.0 m2/g and residual chloride contents over 440 ppm Cl′, decrease the chloride content in two steps to less than 100 ppm, the specific surface area (BET) of to a pre-selected value of less than 10.0 m2/g, preferably between 0.1 and 2.0 m2/g and reduce the pre-sintered granules exhibiting a bulk density in excess of 1.200 g/dm3.
Abstract:
In order to remove fluorine from a zinc containing solution before zinc electro-refining in lower cost, fluorine is removed by adsorption from a zinc containing solution (leached solution) utilizing the character of the predetermined iron compound or zinc compound which can adsorb fluorine in an acid solution and desorb fluorine in an alkaline solution. The fluorine adsorbent/desorbent having adsorbed fluorine is treated in an alkaline solution, to desorb the fluorine. This makes it possible to regenerate the fluorine adsorbent/desorbent. Further, an electrolytic solution for zinc electro-refining can be prepared in lower cost, thus total zinc refining costs can be reduced.
Abstract:
Aqueous dispersion containing pyrogenically produced oxide particles of titanium, zinc, iron or cerium having an average particle size, expressed as a median value, in the dispersion of less than 200 nm, the particle sizes of the oxide particles are not distributed symmetrically in the dispersion, the dispersion contains as dispersing agent at least one (poly)phosphate corresponding to the general formula I and has a pH of 4.5 to 7.5. It is prepared by dispersing a stream of a preliminary dispersion by means of a high-energy mill. It can be used in sunscreen formulations.
Abstract:
Disclosed herein is a device for the synthesis of ferrate, comprising, a plurality of containers 102 to hold starting materials; a measuring unit to measure an amount of said starting materials; a mixer to mix said measured amount of said starting materials; a reaction chamber, wherein said mixed starting materials react to produce ferrate; and a drain through which said ferrate is obtained; wherein said drain is located at a site proximal to the site of use of said ferrate.