Abstract:
A steel cord adapted for the reinforcement of elastomers includes: a core steel filament with a diameter dc and coated with a polymer, six intermediate steel filaments with a diameter di smaller than or equal to dc, the intermediate steel filaments being twisted around the core steel filament, ten to eleven outer steel filaments with a diameter do, smaller than or equal to di wherein these outer steel filaments are twisted around the intermediate steel filaments, and the outer steel filaments are preformed in order to allow rubber penetration inside the cord. The core steel filament, the intermediate steel filaments, and the outer steel filaments all have a tensile strength of at least 2600 MPa. The cord has an outer diameter D according to the following formula: D≦dc+2×di+2×do+0.1 mm, wherein all diameters are expressed in millimeters (mm).
Abstract translation:适用于增强弹性体的钢丝绳包括:具有直径d c c的芯钢丝,并涂覆有聚合物,六个中等长度的细长丝,直径小于或等于 中间钢丝缠绕在芯钢丝上,十到十一个直径小于或等于的钢丝, 其中这些外部钢丝围绕中间钢丝绞合,并且外部钢丝被预成型以允许橡胶在帘线内渗透。 芯钢丝,中间钢丝和外钢丝均具有至少2600MPa的拉伸强度。 帘线具有根据以下公式的外径D:D <= D i> + 2×2×2×2×↓+ 0.1mm,其中 所有直径以毫米(mm)表示。
Abstract:
A pneumatic tire includes metal cords each made of metal filaments twisted together, the metal cords having an initial elongation in a range of from 0.05 to 0.20% and a standard deviation of the initial elongation in a range of not more than 0.02. A method of manufacturing the metal cord comprises shaping metal filaments in a two-dimensional zigzag waveform, and twisting the shaped metal filaments together, wherein the number of the filaments is in a range of from 8 to 12, the metal filaments have the same diameter (d) of from 0.15 to 0.30 mm, the shaped metal filaments have the same zigzag waveforms, the zigzag waveform of each said shaped metal filament has constant wave lengths (P) and constant wave heights (h) wherein the ratio (P/d) is in the range of 100/3 to 700/3, and the ratio (h/d) is in the range of 5/3 to 80/3.
Abstract:
A steel cord (10) comprises a core with one or more core steel filaments (12) and further comprises a first layer of intermediate steel filaments (14) twisted around the core, and a second layer of second steel filaments (18) twisted around the first layer. At least one of the intermediate steel filaments is individually coated by means of a polymer (16) with a minimum thickness of 0.010 mm. The polymer (16) reduces the fretting between the coated intermediate steel filaments (14) and the other steel filaments and makes the steel cord suitable for reinforcement of carcass plies of a tire.
Abstract:
A hybrid cord which is characterized by (A) a core steel filament; (B) a first layer of one or more nonmetallic filaments which are wrapped about the steel filament in the core; and (C) a second layer of from 4 to 12 steel filaments which are wrapped about the first layer.
Abstract:
An extruded polymeric rod is elongated in the solid state by being drawn through a forming device to produce a solid polymeric core having an orientated structure which comprises elongated crystals orientated in the axial direction of the core. The core may also comprise crystals orientated in respective radial directions. The single rod may be replaced by a bundle of rods.
Abstract:
The invention is directed to several embodiments of metallic cord for the reinforcement of tires wherein one or more coaxial layers of metallic filaments are arranged around the metallic core filaments and twisted in the same direction at the same pitch. In one embodiment, the ratio of the diameter of the core filaments to the layer filaments is at least 1.28. In another embodiment, two of the core filaments have a first diameter and the third core filament has a second diameter smaller than the first diameter daimeter. In still another embodiment, two of the core filaments have a first diameter and a third of the core filaments has a second diameter smaller than the first diameter while the coaxial layer filaments have a third diameter equal to the second diameter. In another embodiment, the core has three core filaments twisted about each other and a coaxial layer of eight layer filaments arranged around the core filaments. In yet another embodiment, the core filaments have a first diameter and the layer filaments have a second diameter which is larger than the first diameter.
Abstract:
A wire rope is formed by twisting two different metal wires which vary from each other by at least 50% in their loss factors. The two different metal wires are combined in two embodiments: first, wires of steel material and wires of titanium containing material, or secondly, wires of a steel material and wires of chromium stainless steel material. In a preferred embodiment, a wire rope is formed by twisting a plurality of strands around a center core and two different metal wires as described above are employed to form the strands.
Abstract:
According to embodiments of the present invention, a stranded conductor is formed in which the occurrence of defects, such as strand unevenness of filaments and outward protrusion of filaments, is inhibited. According to embodiments of the present invention, a stranded conductor (1a) includes soft filaments (2a) stranded together. The soft filaments (2a) include a soft filament made of an aluminum material, disposed along a center (101), and include six soft filaments, twelve soft filaments, and eighteen soft filaments made of an aluminum material, disposed around and concentrically with the center. The filaments are softened filaments that are softened. A lay length (Pa) is from 6.2 times to 15.7 times a conductor diameter of the stranded conductor.
Abstract:
A hybrid strand includes a core and outer wires arranged around the core, wherein at least a part of the outer wires is compressed, wherein the compressed outer wires include a flattened cross-sectional shape, the outer wires are composed of steel, and the core is a fiber core. A corresponding production method produces such a hybrid strand.