Abstract:
An antenna comprises: a closed and insulating receiving housing; a radiating portion received in the receiving housing and including a liquid metal; a grounding portion received in the receiving housing and including a liquid metal; a pair of wires respectively connected to the radiating portion and the grounding portion and extending out of the receiving housing; and two air chambers respectively located on the ends of the radiating portion and the grounding portion.
Abstract:
A three-dimensional compound loop antenna is provided, including a ground plane, a pair of horizontal conductive portions substantially horizontal relative to the ground plane, a feed line substantially vertical relative to the ground plane, and a vertical conductive portion coupling the pair of horizontal conductive portions to the ground plane.
Abstract:
The present invention relates to an analytic antenna design for a dipole antenna by eliminating or reducing antenna pattern nulls and impedance anti-resonances.In accordance with one aspect of the present invention, a method for designing a wide bandwidth includes the steps of defining a charge distribution in terms of at least one form factor related parameter where the Legendre polynomial expansion of the electrostatic potential is uniquely linked to each eigenmode of the wideband antenna, and modifying one or more eigenmodes of the wideband antenna by modifying the charge distribution and unique linked Legendre polynomial coefficient.
Abstract:
A communication system and method for using a communication system is provided. An embodiment of an exemplary system can include different communication sets adapted to communicate with each other in different orientations/while moving in a highly secure manner. A first communications system embodiment can include a plurality of segmented fractal antennas and a communications data encoding and/or decoding system adapted to receive communication data and parse such communication data into groups or bins for transmission through an associated segment of the segmented fractal antennas. A second communication system embodiment of the invention has an identical or substantially identical segmented fractal as the first communication system embodiment's plurality of segmented fractal antennas and a communications data encoding and/or decoding system which receives signals sent by the first system and decodes received communications data.
Abstract:
An adaptive near field electromagnetic coupler for coupling electromagnetic power to a plane metallic trace (inlay) independently of the inlay geometry and/or orientation without external control algorithms. This is achieved by employing a microstructure of phase altering elements suitable for creating a constant phase field distribution along a top surface of the coupler structure. This is advantageously applicable to printing devices having a function of encoding RFID layers printed on a medium. In view of the provided flexibility, the coupler arrangement can be employed in a variety of printers of different mechanical design.
Abstract:
A system that incorporates the subject disclosure may include, for example, a circuit for measuring from a near field sensor a first signal representing radiated energy from an antenna structure, measuring from a probe a second signal supplied to the antenna structure, determining a phase differential from a first phase of the first signal and a second phase of the second signal, detecting a frequency offset of the antenna structure based on the phase differential, and adjusting an operating frequency of the antenna structure to mitigate the frequency offset. Other embodiments are disclosed.
Abstract:
A system that incorporates the subject disclosure may include, for example, a circuit for receiving a request to initiate a multiple-input and multiple-output (MIMO) communication session, and configuring a first antenna module and a second antenna module of a communication device to enable the MIMO communication session. The MIMO communication session can combine at least a portion of spectrum between a plurality of bands shared by the first antenna module and the second antenna module. Other embodiments are disclosed.
Abstract:
A system that incorporates the subject disclosure may include, for example, a circuit for determining a magnitude difference between a first signal supplied to an antenna and a second signal radiated by the antenna, determining a phase difference between the first signal supplied to the antenna and the second signal radiated by the antenna, measuring a change in reactance of an antenna, detecting an offset in an operating frequency of the antenna based on one of the magnitude difference, the phase difference, the change in reactance, or any combination thereof, and adjusting a resonant frequency of the antenna to mitigate the offset in the operating frequency of the antenna. Other embodiments are disclosed.
Abstract:
A system incorporating the subject disclosure may include, for example, a method including determining, by a communication device comprising a processor, a usage state of the communication device. The communication device includes selectable antennas, and the usage state includes an orientation of the communication device. The method also includes selecting a set of antennas according to the usage state, and obtaining an antenna gain pattern for an antenna in the selected set of antennas. The method further includes evaluating an expected performance of an antenna configuration corresponding to the selected set of antennas, relative to a performance of an existing antenna configuration. The method also includes initiating usage of the antenna configuration in accordance with improved performance relative to the existing antenna configuration. The antenna configuration comprises a polarization configuration, and the selected set of antennas comprises elements in different planes. Other embodiments are disclosed.
Abstract:
An orientation independent antenna apparatus using a six sided conductive structure and triangular elements on a selected surface thereof, to provide both horizontal and vertical polarization mode feeds. In one implementation, a vertical coupling element is disposed within the structure so that four perpendicular surfaces are parasitically coupled to provide the vertical polarization mode. In other implementations, coaxial cable(s) may be used with a ferrite core and/or combiner circuits to provide the horizontal mode feed.