Abstract:
A printing apparatus includes: a plasma processing unit that performs plasma processing on a processing target surface side of a processing object; a recording unit that ejects ink on the processing target surface side of the processing object; an acquiring unit that acquires setting information, in which an adjustment target area for adjusting surface roughness and surface roughness of the adjustment target area on a surface of an ink layer formed with the ink are set; and a plasma control unit that controls the plasma processing unit to perform plasma processing on a processing area corresponding to the adjustment target area, on the processing target surface side of the processing object, with an amount of plasma energy for obtaining the set surface roughness on the surface of the ink layer formed on the processing area.
Abstract:
A cold plasma helmet application device for delivery of cold plasma benefits to the head of a patient. An appropriate gas is introduced into a helmet receptacle within a containment dome of the helmet. The gas is energized by one or more dielectric barrier devices that receive energy from a pulsed source. The dielectric barrier devices can be configured to match the treatment area. Such a device and method can be used to treat large surface areas treatment sites associated with the head, head trauma, brain cancer, the control of brain swelling with closed head injury or infection, as well as treating male pattern baldness.
Abstract:
A system to generate plasma to clean at least one object, the apparatus comprising a microplate with an electrode support array comprising a plurality of matched pairs of elongated dielectric barrier members connected to a plurality of electrodes, with said dielectric barrier members of said matched pair being spaced at a pre-determined non-uniform gap, a variable time scale pulsed power source electrically coupled to said electrodes to provide electrical pulses and a plurality of electronic components to control polarity of said electrical pulses, such that said pulses produce electron streamers from opposing elongated dielectric barrier members of said plurality of matched pairs and charge on a surface of said dielectric barrier member is substantially evenly distributed.
Abstract:
A plasma generating system. A pair of electrodes are spaced apart by an electrode gap. A source of a gas adapted to place the gas in the electrode gap. A power generating circuit is coupled to the electrodes to generate an electric field across the electrodes so as to initiate a plasma discharge within the electrode gap. The power generating circuit has adequate capacity to maintain a sufficient electric field across the gap during the plasma discharge to allow a plasma impedance to self-tune to the plasma generating system. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
The present invention provides a plasma generating device comprising a high voltage driving device, an insulated substrate, and two electrode units. The present invention further provides a manufacturing method of a plasma generating device comprising the following steps of: (1) preparing an insulated substrate with a first surface and a second surface; (2) preparing two electrode units which respectively dispose one electrode unit on the first surface and the second surface, and (3) connecting the electrode with the high voltage driving device. Compared to the prior arts, the present invention provides a simpler process to manufacture the micro plasma generating device without using delicate facilities or machine tools. The present invention has advantages of lower cost and simpler manufacturing processes.
Abstract:
A preferred modular microplasma microchannel reactor device includes a microchannel array arranged with respect to electrodes for generation of plasma and isolated by dielectric from the electrodes. A cover covers a central portion of the microchannel array, while leaving end portions of the microchannel array exposed. A gas inlet and product outlet are arranged to permit flow into, through and out of the microchannel array. Reactor modules of the invention include pluralities of the modular reactor devices. The reactors devices can be arranged by a housing or a frame to be in fluid communication. A system of the invention arranges pluralities of modules. Preferred module housings, frames and reactors include structural features to create alignments and connections. Preferred modules include fans to circulate feedstock and reaction product. Other reactor devices provide plasma actuation for flow.
Abstract:
A cold plasma mask application device for delivery of a cold plasma to the face of a patient. An appropriate gas is introduced into a gas containment area that is energized by one or more electrodes that receive energy from a pulsed source. The plasma can be prevented from contact with the patient's face, or can be allowed to make contact with the patient's face at the appropriate treatment area. A three-layer approach to the manufacture of the cold plasma mask application device is also described. Such a device and method can be used to treat acne as well as complex facial wounds such as those resulting from trauma, melanoma, and other cancers of the face, rosacea, and psoriasis.
Abstract:
A system including a directional dielectric barrier discharge (DBD) energy system, including a first electrode assembly configured to generate energy, including a first housing having a first fluid disposed in a first chamber, a first magnet, wherein the first magnet is configured to help guide or contain the energy generated by the first electrode assembly, and a first dielectric barrier.
Abstract:
A system and method for decontamination of product is described. An object to be treated, which may be a food product or a medical device, is placed in a substantially closed dielectric container with a working gas. The container is placed in an apparatus capable of producing a controlled electrical discharge so as to create reactive ion species within the package. The object to be treated may be exposed either the immediate products of the electrical discharge or the long lasting reactive ion species, or both, so as to treat the object to reduce or eliminate specific contaminants, which may be biological pathogens or the cause of product spoilage, or inorganic contaminants. The reactive ion species may result from an atmospheric non-equilibrium plasma (ANEP) formed by the apparatus and the treatment may be performed without significantly increasing the bulk temperature of the object being treated.
Abstract:
Methods and apparatus for static charge neutralization in variable pressure environments are disclosed. In particular, barrier discharge ionization apparatus may include a hollow dielectric channel disposed within a variable pressure environment and may have at least one open end, a reference emitter disposed on the outer surface of the channel, and a high voltage electrode disposed within the channel. The high voltage electrode may present a high intensity electric field to the reference emitter through the dielectric channel in response to the provision of a variable-waveform signal dictated by conditions in the variable pressure environment. This results in the generation of a plasma region with electrically balanced charge carriers within the variable pressure environment due to barrier discharge occurring at the interface of the reference emitter and the outer surface of the dielectric channel. The disclosed apparatus are compatible with either radio frequency or micro-pulse voltage power supplies.