Abstract:
Provided is a time-of-flight mass spectrometer including: an ionization part receiving electron beams to thereby emit ions; a cold electron supply part injecting the electron beams to the ionization part; an ion detection part detecting the ions emitted from the ionization part; and an ion separation part connecting the ionization part and the ion detection part, wherein the cold electron supply part includes a microchannel plate receiving ultraviolet rays to thereby emit the electron beams, the ions emitted from the ionization part pass through the ion separation part to thereby reach the ion detection part, and the ion separation part has a straight tube shape.
Abstract:
A method of manufacturing an electron multiplier body, the method includes a step of preparing a first plate-like member having a surface and a back surface and a pair of second plate-like members, a step of forming, in the first plate-like member, a hole portion reaching from the front surface to the back surface, a step of constituting a laminated body by laminating the first and second plate-like members on each other so that the first plate-like member is interposed between the pair of second plate-like members to form a channel defined by the hole portion in the laminated body, a step of integrating the laminated body, a step of constituting a main body portion by cutting the integrated laminated body so that the channel is open, and a step of forming a resistive layer and a secondary electron multiplication layer on an inner surface of the channel.
Abstract:
A transmission mode photocathode comprises: an optically transparent substrate having an outside face to which light is incident, and an inside face from which the light incident to the outside face side is output; a photoelectric conversion layer disposed on the inside face side of the optically transparent substrate and configured to convert the light output from the inside face into a photoelectron or photoelectrons; and an optically-transparent electroconductive layer comprising graphene, and disposed between the optically transparent substrate and the photoelectric conversion layer.
Abstract:
An internal portion of a photomultiplier tube (PMT) having a reflective photocathode array, and a method for manufacturing the same, are provided. The internal portion of the PMT comprises the reflective photocathode array and at least one dynode structure corresponding to the array of reflective photocathodes. Each reflective photocathode receives light and from the light, generates photoelectrons which then travel towards the at least one dynode structure. Upon the photoelectrons making contact with the at least one dynode structure, the photoelectrons are multiplied.
Abstract:
A photomultiplier according to an embodiment of the present invention has a sealed container the interior of which is maintained in a vacuum state, and an electron multiplier unit housed in the sealed container, and the sealed container is partly constructed of ceramic side tubes, on the assumption that the photomultiplier is used under high-temperature, high-pressure environments. The photomultiplier further has a structure for fixing an installation position of the electron multiplier unit relative to the sealed container, for improvement in anti-vibration performance.
Abstract:
A system for detecting electromagnetic radiation or an ion flow, including an input device for receiving the electronic radiation or the ion flow and emitting primary electrons in response, a multiplier of electrons in transmission, for receiving the primary electrons and emitting secondary electrons in response, and an output device for receiving the secondary electrons and emitting an output signal in response. The electron multiplier includes at least one nanocrystalline diamond layer doped with boron in a concentration of higher than 5·1019 cm−3.
Abstract translation:一种用于检测电磁辐射或离子流的系统,包括用于接收电子辐射或离子流并响应于发射一次电子的输入装置,传输中的电子的乘数,用于接收一次电子并发出响应的二次电子, 以及输出装置,用于接收二次电子并响应于发射输出信号。 电子倍增器包括至少一个掺杂有浓度高于5×10 19 cm -3的硼的纳米晶体金刚石层。
Abstract:
The present disclosure provides an ion detector for improving the effect of electric field for pulling in an ion to be detected to a first-stage electrode of a secondary electron multiplier (SEM), and improving the effect of a stray light reduction. In one example embodiment, an ion detector includes a SEM, and a lead-in electrode for pulling in an ion to a first-stage electrode side of the SEM. At least one of the area of the lead-in electrode and a potential difference between the lead-in electrode and neighboring electrodes of the lead-in electrode, the neighboring electrode being an electrode not of the SEM, is set so that the light amount of internal-stray light generated inside the detector entering the first-stage electrode is not more than that of external-stray light generated outside the detector entering the first-stage electrode, when an ion is introduced into the detector.
Abstract:
A dynode (8) constituting an electron multiplier or a photomultiplier is provided with eight rows of channels (15) each defined by an outer frame (16) and a partitioning part (17) of the dynode (8). In each channel (15), a plurality of electron multiplying holes (14) are arranged. In specified positions of the outer frame (16) and the partitioning part (17) of the dynode (8), glass receiving parts (21) wider than the outer frame (16) and the partitioning part (17) are provided integrally with the dynode (8). Glass parts (22) are bonded to all the glass receiving parts (21). The glass parts (22) are bonded by applying glass to the glass receiving parts (21) and hardening the glass and each have a generally dome-like convex shape. Each dynode (8) is formed after the dome-like glass part (22) is bonded to the glass receiving part (21).
Abstract:
In the microchannel 50, a conductive film 52 is formed on an electron input surface of a dynode 51 where the plurality of channels are arranged. The conductive film is made of material that can transmit light that has originated photoelectrons and that has a refractive index lower than that of the dynode constituting material.
Abstract:
According to the photomultiplier tube, the dynode unit 10 is constructed from a plurality of stages of dynodes 11 laminated one on another for multiplying incident electrons in a cascade manner through each of a plurality of channels. The anode unit 13 has a plurality of anodes 24 which define a plurality of electron passage gaps 14 each for transmitting the electrons emitted from the dynode unit 10 at a corresponding channel. The inverting dynode plate 15 is provided with a plurality of electron incident strips 17 each for receiving electrons having passed through a corresponding electron passage gap 14 in the anode unit 13, multiplying the electrons, and guiding the electrons back to the corresponding anode 24. The electron incident strip 17 is designed to have: the main surface 18a confronting the electron passage gap 14; and the rising surface 18c rising toward the anode unit 13 from the edge 18b of the main surface 18a which is located at a position confronting the electron passage gap 14 in the anode unit 13.