Abstract:
An apparatus for toggling circuits includes a plurality of parallel channels each having a first end and a second end, a plurality of ports transverse to the plurality of parallel channels, wherein each port has a plurality of valves corresponding to the plurality of parallel channels, wherein each valve selectively opens and closes in response to an input and wherein opening a valve fills a portion of a port with a conducting fluid. The apparatus also includes a controller communicatively coupled to the input of each valve and configured to complete an electric circuit between the first end of the parallel channel and the port corresponding to the valve when the controller opens the valve. A method executed by a computer and a corresponding computer program product are also disclosed herein.
Abstract:
A master cylinder for a regulated braking system having at least one piston, which is movable in a housing and which is sealed from a pressure chamber by a sealing element arranged in a ring groove of the housing, which can be connected to an unpressurized supply chamber by control passages designed in the pistons. In order to reduce the flow resistance of the control passages at the same dead stroke, the control passages have a control edge designed parallel to a piston end face of at least one of the pistons.
Abstract:
A power source apparatus includes a controller that carries out horsepower control to determine a flow rate of a hydraulic pump in accordance with a discharge pressure of the hydraulic pump detected by a pump pressure determination sensor. In horsepower control, the controller determines the flow rate such that a maximum input setting for the hydraulic pump defined by the discharge pressure and the flow rate is greater than a maximum output of the engine when the discharge pressure is a first discharge pressure, gradually becomes smaller as the discharge pressure changes from the first discharge pressure towards a higher pressure, and becomes smaller than the maximum output of the engine when the discharge pressure is a second discharge pressure.
Abstract:
A drive system for a catwalk skate that uses a hydraulic skate-cable drive system. The system includes two counteracting hydraulic cylinders, each with a sheave connected to the cylinder rods, and a cable that winds around each of the sheaves and connects to both ends of the skate.
Abstract:
The brake or coupling system (1) comprises a first piston (2) arranged in a first piston cylinder (3) thereby forming a first piston chamber (5) and a second piston (8) arranged in a second piston cylinder (9) thereby forming a second piston chamber (10). The first piston (2) is adapted to be displaced between a braking position and a rest position. The first piston (2) is spring biased in the direction of its rest position, and the second piston (8) is adapted to adjust a distance (X) provided between a friction element (6) and a rotatable element (7) in the rest position of the first piston (2) by means of adjustment of a volume of hydraulic fluid trapped in the second piston chamber (10). At least one spring element is arranged to act between the first and second pistons (2, 8). The first and second pistons (2, 8) are so arranged that a hydraulic pressure in the first and second piston chambers (5, 10), respectively, will urge the first and second pistons (2, 8) in opposite directions, thereby biasing the at least one spring element.
Abstract:
A pneumatic shifting force supporting device for a gearbox comprises a housing structure having a compressed air inlet and an air vent, and a control rod and an output unit comprising a working piston defining two pneumatic working chambers. A valve arrangement is functionally provided between control rod and output unit. By acting on the two pneumatic working chambers, the valve arrangement causes a pneumatic follow-up control from the output unit to the control rod comprising two valve pistons, annular sealing edges, valve spools and valve seats. A throttle slide is associated with at least one of the valve pistons and is slidable relative thereto. The throttle slide has a closing edge co-operating with the respective associated valve seat and delimiting at least one throttle passage, the cross-sectional area of which depends on the relative position of the throttle slide with respect to the associated valve piston.
Abstract:
The invention relates to a liquid piston arrangement for compressing and expanding gases. The liquid piston arrangement includes a liquid piston which is embodied by a liquid level formed by a liquid in a high-pressure space and a stack of sheets with mutually spaced apart sheet metal plates which is supported in the high-pressure space dipping in the liquid and is sequentially flowed around by the liquid.
Abstract:
It is an object to reduce noise leakage out of an apparatus, and improve reliability of an electric brake control apparatus. An electric brake control apparatus includes: a motor that includes a housing made of a conductive member; a control unit that performs drive control of the motor; and a hydraulic unit that includes a housing made of a conductive member, and further includes a conductive connection member that electrically connects a ground line of the control unit, the housing of the motor and the housing of the hydraulic unit to each other.
Abstract:
The present invention is directed, in part, to an apparatus and methods related to an expandable storage tank for compressed gas, the storage tank prepared from a puncture resistant, flexible fabric material in which the storage tank is expandable to a desired volume when inflated and when deflated. During periods of non-use the storage tank is retracted in a compact and folded manner to save space compared to when the tank is inflated. The storage tank is utilized by employing its use in conjunction with a traditional air compressor and can be configured with or without a rigid outer shell that expands in relation to the amount of compressed air transferred into the expandable storage tank.
Abstract:
A hydraulic system and method of controlling hydraulic pressure are disclosed. The hydraulic system includes a pump fluidly coupled to a reservoir that contains hydraulic fluid, a control valve fluidly coupled to the pump, the control valve being selectively movable between at least two positions, a relief valve fluidly coupled to the pump via a relief conduit, the relief valve operable to flow hydraulic fluid from an outlet of the pump to the reservoir, and a variable pressure setpoint module fluidly coupled to the relief valve and the control valve. The variable pressure setpoint module being operable to open the relief valve in response to at least two pressure setpoints depending on a position of the control valve.