Abstract:
An integrated device includes a semiconducting substrate having a matrix of active pixels formed therein. Each active pixel includes an OLED diode, a first nMOS transistor having its source coupled to an anode of the OLED diode, and a refresh circuit coupled to a gate of the first nMOS transistor. The first nMOS transistor has its source and its substrate coupled together. The first nMOS transistor is situated in and on a first part of the semiconductor substrate, and the refresh circuit is situated in and on a second part of the semiconductor substrate, with the first part and the second part being electrically insulated from one another.
Abstract:
A GOP-independent dynamic bit-rate controller system includes a user interface to receive one or more input parameters, a bit-rate controller and an encoder. The bit-rate controller regulates a bit-rate of an output bit-stream. The bit-rate controller includes multiple bit-rate modules to determine a bit-estimate and a quantization parameter, and a control module to calculate a convergence period based on the received input parameters and a frame rate. The control module selects a bit rate module based on the convergence period and the encoder generates the output bit-stream using the quantization parameter determined by the bit rate module.
Abstract:
A semiconductor chip includes an OCC that receives an ATPG test pattern and generates clock pulses in response. An OCC test circuit detects clock pulses of the OCC circuit and provides debug data to test output configurable logic that also receives results from other circuits testing different DUT flip-flops. A clipping test circuit detects ATPG failures due to clipped clock pulses from the OCC by providing pulse-width sensitive flip-flop outputs to DUT I/Os. An IR drop test circuit detects if ATPG failures are due to IR-drop problems in certain flip-flops. A pulse bit manipulating circuit varies the test pattern provided to the OCC and OCC-generated clock pulses. A debug controller connected to test output configurable logic selects between results of the different tests for supply as an output test signal to be compared on-the-fly with expected pattern data on ATE and used to isolate errors on the chip.
Abstract translation:半导体芯片包括接收ATPG测试图案并产生响应的时钟脉冲的OCC。 OCC测试电路检测OCC电路的时钟脉冲,并提供调试数据以测试输出可配置逻辑,其也接收来自测试不同DUT触发器的其他电路的结果。 削波测试电路通过向DUT I / O提供脉冲宽度敏感的触发器输出来检测来自OCC的剪辑时钟脉冲的ATPG故障。 IR跌落测试电路检测ATPG故障是否由于某些触发器中的IR降低问题。 脉冲位操作电路改变提供给OCC和OCC产生的时钟脉冲的测试模式。 连接到测试输出可配置逻辑的调试控制器在不同测试结果之间选择供应作为输出测试信号,与ATE上的预期模式数据进行比较,并用于隔离芯片上的错误。
Abstract:
A drive circuit includes a first drive transistor coupled between a first supply node and an output pad of an integrated circuit and a second drive transistor coupled between a second supply node and the output pad. The first drive transistor and second drive transistors are controlled by a control signal. A body bias generator circuit is configured to apply a variable first body bias to the first transistor and a variable second body bias to the second transistor. The variable first and second body biases are generated as a function of the control signal and a voltage at the output pad.
Abstract:
A valley inductance current polarity change in a pulse width modulated circuit charged with an inductive charge is detected by comparing respective times that a first output of the circuit charged with an inductive charge and a second output of a pulse width modulated reference circuit with no inductive charge reach an output level. Responsive thereto, control over operation of the pulse width modulated circuit charged with an inductive charge is made with respect to switching to a pulse skipping mode of operation or keeping the pulse width modulation mode of operation.
Abstract:
An electronic device includes a pulsed latch circuit configured to latch a data input signal to an output based upon receipt of a pulse signal. A pulse generation circuit is configured to compare the data input signal and an output signal at the output of the pulsed latch circuit, and to generate the pulse signal based upon a mismatch therebetween in response to a clock signal.
Abstract:
A method for transmitting data in series includes producing a scrambled signal by applying a scrambling using a pseudo-random sequence to an incoming serial signal conveying the data and producing an outgoing serial signal from the scrambled signal. After each sequence of N consecutive bits at the same state in the scrambled signal, a dummy bit of reverse state is inserted in the outgoing signal.
Abstract:
A device may be associated with a power source. The device may include a charge pump configured to output a pulse-width modulated voltage based upon an input voltage from the power source, with the pulse-width modulated voltage varying between a first voltage and a second voltage. The device may also include a low-pass filter comprising an output capacitor, with the output capacitor being configured to average the pulsed-width modulated voltage and to output a filtered voltage having a value different than that of the input voltage. The device may further include a controller configured to selectively decouple the charge pump from the power source when a load imposed on the low-pass filter is below a threshold load.
Abstract:
An electronic device includes a movable mirror system to selectively reflect an incident image projection beam traveling along a first path toward a second path different than a first path. The image projection beam displays a corrected image at a first location but would otherwise display an uncorrected image at a second location when the movable mirror system reflects the image projection beam toward the second path. The electronic device also includes an optical correction system having at least one corrective optic element to correct the image projection beam to display a corrected image at the second location when the movable mirror system reflects the image projection beam toward the second path.
Abstract:
A data receiving device may include an envelope detector that may include first and second inputs configured to receive a differential input signal, a first pair of detectors coupled to the first input and configured to generate first and second detector outputs, and a second pair of detectors coupled to the second input and configured to generate third and fourth detector outputs. The envelope detector may also include a logic circuit configured to generate a reset based upon the first and third detectors. The data receiving device may also include a receiver circuit coupled to the envelope detector and configured to generate an output based upon the second and fourth detectors along with the reset, and a first bit detection circuit coupled to the receiver circuit.