Abstract:
A method for calculating a process center for a chuck in a processing chamber is provided. The method includes generating pre-processing and post-processing measurement data points, which is perform by measuring thickness of a film substrate at a set of orientations and a set of distances from a geometric center of the substrate. The method also includes comparing the pre-processing and post-processing measurement data points to calculate a set of etch depth numbers. The method further includes generating etch profiles for the set of orientations. The method yet also includes extrapolating a set of radiuses, which is associated with a first etch depth, from the etch profiles. The method yet further includes generating an off-centered plot, which is a graphical representation of the set of radiuses versus the set of orientations. The method more over includes calculating the process center by applying a curve-fitting equation to the off-centered plot.
Abstract:
A method of determining an average electrical response to a conductive layer on a set of substrates vibrating about a vibration mean is disclosed. The method includes positioning a sensor near a position on a first substrate; and measuring a first plurality of electrical responses, wherein each of the first plurality of electrical responses is function of an electrical film property response and a first substrate proximity response. The method also includes positioning the sensor near the position on a second substrate; and measuring a second plurality of electrical responses, wherein each of the second plurality of electrical responses is function of the electrical film property response and a second substrate proximity response. The method further includes determining a first average electrical response for the first substrate and a second average electrical response for the second substrate, wherein a difference between an average first substrate proximity response and an average second substrate proximity response is about zero.
Abstract:
A computer-implemented data presentation technique for presenting a set of expected failure states of system-related constructs pertaining to a plasma processing system is disclosed. The technique includes receiving a set of indicia pertaining to a first system-related construct of said system-related constructs. The technique also includes computing, in accordance with a first sub-method and responsive to said receiving said first set of indicia, a first expected failure state value. The technique further includes computing a first normalized expected failure state value in accordance with a first weight; correlating said first normalized expected failure state value to a first color; and displaying said first color in a cell of an n-dimensional matrix, wherein n is a number greater than 1.
Abstract:
A plasma processing chamber for processing a substrate to form electronic components thereon is disclosed. The plasma processing chamber includes a plasma-facing component having a plasma-facing surface oriented toward a plasma in the plasma processing chamber during processing of the substrate, the plasma-facing component being electrically isolated from a ground terminal. The plasma processing chamber further includes a grounding arrangement coupled to the plasma-facing component, the grounding arrangement including a first resistance circuit disposed in a first current path between the plasma-facing component and the ground terminal. The grounding arrangement further includes a RF filter arrangement disposed in at least one other current path between the plasma-facing component and the ground terminal, wherein a resistance value of the first resistance circuit is selected to substantially eliminate arcing between the plasma and the plasma-facing component during the processing of the substrate.
Abstract:
A system and method for planarizing and controlling non-uniformity on a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple features in the pattern. The conductive interconnect material having an overburden portion. A bulk of the overburden portion is removed and a remaining portion of the overburden portion has a non-uniformity. The non-uniformity is mapped, optimal solution determined and a dynamic liquid meniscus etch process recipe is developed to correct the non-uniformity. A dynamic liquid meniscus etch process, using the dynamic liquid meniscus etch process recipe, is applied to correct the non-uniformity to substantially planarize the remaining portion of the overburden portion.
Abstract:
A system and method of determining multiple uniformity metrics of a semiconductor wafer includes quantitatively defining a location metric of a nonuniformity on the surface of the wafer. A quantity is measured at multiple locations on a top surface of the wafer and a center of mass is of the nonuniformity is determined.
Abstract:
A method for etching a bevel edge of a substrate in a processing chamber is provided. The method includes flowing an inert gas into a center region of the processing chamber defined above a center region of the substrate and flowing a mixture of an inert gas and a processing gas over an edge region of the substrate. The method further includes striking a plasma in the edge region, wherein the flow of the inert gas and the flow of the mixture maintain a mass fraction of the processing gas substantially constant. A processing chamber configured to clean a bevel edge of a substrate is also provided.
Abstract:
An arrangement for performing pressure control within a processing chamber substrate processing is provided. The arrangement includes a peripheral ring configured at least for surrounding a confined chamber volume that is configured for sustaining a plasma for etching the substrate during substrate processing. The peripheral ring includes a plurality of slots that is configured at least for exhausting processed byproduct gas from the confined chamber volume during substrate processing. The arrangement also includes a conductive control ring that is positioned next to the peripheral ring and is configured to include plurality of slots. The pressure control is achieved by moving the conductive control ring relative to the peripheral ring such that a first slot on the peripheral ring and a second slot on the conductive control ring are offset with respect to one another in a range of zero offset to full offset.
Abstract:
Methods and apparatus for operating the plasma processing chamber of a plasma processing tool in at least two modes are disclosed. In the first mode, the substrate-bearing assembly is movable within a gap-adjustable range to adjust the gap between the electrodes to accommodate different processing requirements. In this first mode, RF ground return path continuity is maintained irrespective of the gap distance as long as the gap distance is within the gap-adjustable range. In the second mode, the substrate bearing assembly is capable of moving to further open the gap to accommodate unimpeded substrate loading/unloading.
Abstract:
A plasma processing chamber configured for cleaning a bevel edge of a substrate is provided. The chamber includes a top edge electrode surrounding an insulating plate, and the insulator plate opposes a bottom electrode. The top edge electrode is electrically grounded and separated from the insulator plate by a top dielectric ring. The chamber also includes a bottom edge electrode that is electrically grounded and surrounds the bottom electrode and is separated from the bottom electrode by a bottom dielectric ring. The bottom edge electrode is oriented to oppose the top edge electrode, and the bottom edge electrode has an L shape that is up-facing. Bevel edge plasma processing of a substrate edge is configured to be processed in a chamber having the top and bottom edge electrodes.