Abstract:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
Abstract:
A memory device, in particular to a resistively switching memory device such as a Phase Change Random Access Memory (“PCRAM”), with a transistor is disclosed. Further, the invention relates to a method for fabricating a memory device. According one embodiment of the invention, a memory device is provided, having at least one nanowire or nanotube or nanofibre access transistor. In one embodiment, the nanowire or nanotube or nanofibre access transistor directly contacts a switching active material of the memory device. According to an additional embodiment, a memory device includes at least one nanowire or nanotube or nanofibre transistor with a vertically arranged nanowire or nanotube or nanofibre.
Abstract:
A memory cell includes a first electrode comprising a nanowire, a second electrode, and phase-change material between the first electrode and the second electrode.
Abstract:
The present invention provides a fabrication method for a trench capacitor having an insulation collar (10) in a silicon substrate (1), having the steps of: providing a trench (5) in the silicon substrate (1); providing the insulation collar (10) in the upper trench region as far as the top side of the silicon substrate (1); depositing a layer (12) made of a metal oxide in the trench (5); carrying out a thermal treatment for selectively reducing the layer (12), a region of the layer (12) that lies below the insulation collar (10) above the silicon substrate (1) being reduced and being converted into a first capacitor electrode layer (15) made of a corresponding metal silicide, and a region of the layer (12) that lies above the insulation collar (10) not being reduced; selectively removing the non-reduced region of the layer (12) that lies above the insulation collar (10); providing a capacitor dielectric layer (18) in the trench (5) above the first capacitor electrode layer (15); and providing a second capacitor electrode layer (20) in the trench (5) above the capacitor dielectric layer (18).
Abstract:
The present invention provides a method for fabricating a capacitive element (100), a substrate (101) being provided as a first electrode layer of the capacitive element (100), the substrate (101) provided as an electrode layer is conditioned, a dielectric layer (102) is deposited on the conditioned substrate (101) and a second electrode layer (104) is applied on the layer stack produced, the layer stack being modified by a heat treatment in such a way that the dielectric layer (102) deposited on the conditioned substrate (101) forms a dielectric mixed layer (105) with a reaction layer (103) deposited on the dielectric layer (102), which dielectric mixed layer has an increased dielectric constant (k) or an increased thermal stability.
Abstract:
The invention relates to a method for manufacturing at least one phase change memory cell. The method at least fabricating at least one first lamellar spacer of conductive material, which is electrically coupled to the PCM material of the memory cell; fabricating at least one second lamellar spacer on top of the first lamellar spacer, wherein the second lamellar spacer crosses the first lamellar spacer in the area of the PCM material; partially removing the first lamellar spacer, wherein the second lamellar spacer serves as a hardmask for partially removing the first lamellar spacer, so that the first lamellar spacer forms at least one electrode contacting an area of PCM material.
Abstract:
The present invention provides a method for fabricating a trench capacitor with an insulation collar in a substrate, which is electrically connected to the substrate on one side via a buried contact, in particular for a semiconductor memory cell with a planar selection transistor that is provided in the substrate and connected via the buried contact The invention likewise provides a corresponding trench capacitor.
Abstract:
An integrated conductor arrangement comprises a substrate with a top side, at least one tubular conductor trench provided in the substrate below the top side of the substrate and a conductor. The conductor comprises at least one tubular conductor layer and is integrated in the conductor trench.
Abstract:
To form a semiconductor device, a plurality of upwardly extending conductors can be formed. The conductors extend outward from a surface of a semiconductor body, adjacent ones of the conductors being separated from each other by a separating material. At least one support structure is formed between adjacent ones of the upwardly extending conductors. The support structure is formed of a material different than the separating material. The separating material can be removed and further processing can be performed on the semiconductor device.
Abstract:
A method for producing a dielectric layer on a substrate made of a conductive substrate material includes reducing a leakage current that flows through defects of the dielectric layer at least by a self-aligning and self-limiting electrochemical conversion of the conductive substrate material into a nonconductive substrate follow-up material in sections of the substrate that are adjacent to the defects. Also provided is a configuration including a dielectric layer with defects, a substrate made of a conductive substrate material, and reinforcement regions made of the nonconductive substrate follow-up material in sections adjacent to the defects.