Abstract:
A fluid catalytic cracking process for producing relatively low emissions fuels. The feedstock is exceptionally low in nitrogen and aromatics and relatively high in hydrogen. The catalyst is an amorphous silica-alumina or a zeolitic material having a relatively small unit cell size. The feedstock can be characterized as having less than about 50 wppm nitrogen; greater than about 13 wt. % hydrogen; less than about 7.5 wt. % 2+ring aromatic cores; and not more than about 15 wt. % aromatic cores overall.
Abstract:
An improved spiral wound element for separations is disclosed wherein the improvement comprises using as the feed/retentate space one or more layers of a material having an open cross-sectional area in the range 30 to 70% and as the permeate spacer material at least three layers of material two of which are fine and have an open cross-sectional area of about 10 to 50% surrounding a coarse layer having an open cross-sectional area of about 50 to 90%.
Abstract:
The yield, raffinate product quality, and throughput of the selective solvent extraction of hydrocarbon feeds is improved by subjecting the hydrocarbon feeds from which aromatic hydrocarbons are to be selectively solvent extracted to a membrane separation process which selectively permeates aromatics through the membranes to produce a permeate rich in aromatics and a retentate rich in saturates and 1-ring aromatics and subjecting this retentate to the selective solvent extraction process.
Abstract:
A fluid coking-gasification process for converting heavy hydrocarbonaceous chargestocks to lower boiling products in which a zeolitic material is use to mitigate slagging in the gasifier, especially when the zeolite material is spent catalytic cracking catalyst. The zeolite material is added either directly into the gasifier on it is mixed with the coke passing from the heating zone to the gasification zone.
Abstract:
The invention relates to hydroalkylation processes. In the processes, a hydrogen stream comprising hydrogen and an impurity is treated to reduce the amount of the impurity in the hydrogen stream. The hydrogen is then hydroalkylated with benzene to form at least some cyclohexylbenzene. The processes also relate to treating a benzene stream comprising benzene and an impurity with an adsorbent to reduce the amount of the impurity in the benzene stream. The hydroalkylation processes described herein may be used as part of a process to make phenol.
Abstract:
In a process for producing phenol and/or cyclohexanone, benzene and hydrogen are contacted with a first catalyst in a hydroalkylation step to produce a first effluent stream comprising cyclohexylbenzene, cyclohexane, and unreacted benzene. At least part of the first effluent stream is supplied to a first separation system to divide the first effluent stream part into a cyclohexylbenzene-rich stream and a C6 product stream comprising unreacted benzene and cyclohexane.
Abstract:
In a process for producing cyclohexylbenzene, benzene and hydrogen are contacted under hydroalkylation conditions with a catalyst system comprising a MCM-22 family molecular sieve and at least one hydrogenation metal. The conditions comprise a temperature of about 140° C. to about 175° C., a pressure of about 135 psig to about 175 psig (931 kPag to 1207 kPag), a hydrogen to benzene molar ratio of about 0.30 to about 0.65 and a weight hourly space velocity of benzene of about 0.26 to about 1.05 hr−1.
Abstract:
In a process for producing cyclohexylbenzene, benzene and hydrogen are fed to at least one reaction zone. The benzene and hydrogen are then contacted in the at least one reaction zone under hydroalkylation conditions with a catalyst system comprising a molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom, and at least one hydrogenation metal to produce an effluent containing cyclohexylbenzene. The catalyst system has an acid-to-metal molar ratio of from about 75 to about 750.
Abstract:
In a process for producing cyclohexylbenzene, benzene and hydrogen are contacted under hydroalkylation conditions with a catalyst system comprising a MCM-22 family molecular sieve and at least one hydrogenation metal. The conditions comprise a temperature of about 140° C. to about 175° C., a pressure of about 135 psig to about 175 psig (931 kPag to 1207 kPag), a hydrogen to benzene molar ratio of about 0.30 to about 0.65 and a weight hourly space velocity of benzene of about 0.26 to about 1.05 hr−1.
Abstract:
A promoter can have utility in selective heterogeneous oxidation of arylalkyl hydrocarbons such as, for example, cyclohexyl benzene and/or sec-butyl benzene to form hydroperoxides. The promoter can include the product of contacting a solid support comprising a metal oxide surface and an iron compound. The solid support can include, for example, titanium dioxide and/or an iron oxide such as magnetite and can have magnetic susceptibility. A method for the oxidation of arylalkyl hydrocarbons to form hydroperoxides can include contacting 16 an arylalkyl hydrocarbon with oxygen in the presence of the promoter under catalytic oxidation conditions to form arylalkyl hydroperoxide, which can then be converted to phenol via cleavage 26. The method can include recovery 22 of the promoter from the arylalkyl hydroperoxide and can further include recycling the recovered promoter to the contacting 16. Where the solid support has magnetic susceptibility, the recovery 22 can include magnetic separation of the promoter.