摘要:
A 2D/3D switchable display system having a selector for selecting a two-dimensional (2D) or a three-dimensional (3D) image processing path; a first processor for processing image data through the two-dimensional image processing path; a second processor, independent of the first processor, for processing image data through the three dimensional image processing path; a first set of at least three emitters having corresponding first wavelengths; a second set of at least three emitters having corresponding second wavelengths; and a controller that during a 2D operation activates both first and second sets of emitters to present a single image, while during a 3D operation activates the first set of emitters to present a first image having one half of stereo image information and activates the second set of emitters to present a second image having a second half of stereo image information.
摘要:
A method of making a semiconductor nanowire device includes providing a plurality of spaced semiconductor nanowires on a growth substrate; applying a dielectric material so that it is disposed between the semiconductor nanowires producing a layer of embedded semiconductor nanowires having a top surface opposed to a bottom surface, wherein the bottom surface is defined by the interface with the growth substrate; depositing a first electrode over the top surface of the layer of embedded semiconductor nanowires so that it is in electrical contact with the semiconductor nanowires; joining the first electrode to a device substrate; removing the growth substrate and exposing the bottom surface of the layer of embedded semiconductor nanowires; and depositing a second electrode on the bottom surface of the layer of embedded semiconductor nanowires so that it is in electrical contact with the semiconductor nanowires.
摘要:
Method of making a semiconductor nanowire photovoltaic device includes providing a plurality of spaced photovoltaic semiconductor nanowires on a growth substrate; applying dielectric material so that it is disposed between the semiconductor nanowires producing a layer of embedded semiconductor nanowires having a top surface opposed to a bottom surface, the bottom surface being defined by the interface with the growth substrate; depositing a first electrode over the top surface of the layer of embedded semiconductor nanowires in electrical contact with the nanowires; joining the first electrode to a device substrate; removing the growth substrate and exposing the bottom surface; depositing a second electrode on the bottom surface so that it is in electrical contact with the semiconductor nanowires; and wherein either the first or second electrode is transparent to permit light to be transmitted through the transparent electrode and be absorbed by the photovoltaic semiconductor nanowires.
摘要:
Method of making a light emitting semiconductor nanowire device includes providing a plurality of spaced light emitting semiconductor nanowires on a growth substrate; applying a dielectric material disposed between the semiconductor nanowires producing a layer of embedded semiconductor nanowires having a top surface opposed to a bottom surface, wherein the bottom surface is defined by the interface with the growth substrate; depositing a first electrode over the top surface in electrical contact with the nanowires; joining the first electrode to a device substrate; removing the growth substrate and exposing the bottom surface of the layer of embedded nanowires; depositing a second electrode on the bottom surface of the nanowires so that it is in electrical contact with the nanowires; and wherein either the first or second electrode is transparent to permit light to be transmitted from the light emitting semiconductor nanowires through the transparent electrode.
摘要:
A method of printing and an apparatus for controlling the directionality of liquid emitted from nozzles of a printhead are provided. Example embodiments of the apparatus include directionality control of liquid jets or liquid drops using a liquid jet directionality control mechanism. Example embodiments of the liquid jet directionality control mechanism include asymmetric energy application device configurations, nozzle geometry configurations, liquid delivery channel geometry configurations, or combinations of these configurations.
摘要:
An electronic plan-o-gram system and method for determining plan-o-gram data are provided. In accordance with the method, identifiers associated with each of more than one product located in at least one storage area in a storage facility are sensed and a product type and product location of each product is determined based upon the sensed identifiers. A configuration of the at least one storage area in the storage facility and a location of each product in the storage facility is determined based upon the configuration and the determined product locations. A plan-o-gram data is stored indicating the location of products in the storage facility.
摘要:
A 2D/3D switchable display system having a selector for selecting a two-dimensional (2D) or a three-dimensional (3D) image processing path; a first processor for processing image data through the two-dimensional image processing path; a second processor, independent of the first processor, for processing image data through the three dimensional image processing path; a first set of at least three emitters having corresponding first wavelengths; a second set of at least three emitters having corresponding second wavelengths; and a controller that during a 2D operation activates both first and second sets of emitters to present a single image, while during a 3D operation activates the first set of emitters to present a first image having one half of stereo image information and activates the second set of emitters to present a second image having a second half of stereo image information.
摘要:
A method for increasing ambient light contrast ratio within an electroluminescent device, including: a reflective electrode and a transparent electrode having an EL unit formed there-between. The EL unit includes a light-emitting layer containing quantum dots. Additionally, the method includes locating a contrast enhancement element on a side of the transparent electrode opposite the EL unit. The contrast enhancement element includes a patterned reflective layer and a patterned light-absorbing layer whose patterns define one or more transparent openings, so that light emitted by the light-emitting layer passes through the one or more transparent openings. The patterned reflective layer is located between the patterned light absorbing layer and the transparent electrode.