摘要:
Beforehand, the device characteristic patterns of each critical dimension SEM are measured, a sectional shape of an object to undergo dimension measurement is presumed by a model base library (MBL) matching system, dimension measurements are carried out by generating signal waveforms through SEM simulation by inputting the presumed sectional shapes and the device characteristic parameters, and differences in the dimension measurement results are registered as machine differences. In actual measurements, from the dimension measurement results in each critical dimension SEM, machine differences are corrected by subtracting the registered machine differences. Furthermore, changes in critical dimension SEM's over time are monitored by periodically measuring the above-mentioned device characteristic parameters and predicting the above-mentioned dimension measurement results. According to the present invention, actual measurements of machine differences, which require considerable time and effort, are unnecessary. In addition, the influence of changes in samples over time, which is problematic in monitoring changes in devices over time, can be eliminated.
摘要:
An inspection method, including: illuminating a light on a wafer on which plural chips having identical patterns are formed; imaging corresponding areas of two chips formed on the wafer to obtain inspection images and reference images with an image sensor; and processing the obtained inspection image and the reference image to produce a difference image which indicates a difference between the inspection image and the reference image and detect a defect by comparing the difference image with a threshold, wherein a threshold applied to a difference image which is produced by comparing the inspection image and the reference image obtained by imaging peripheral portion of the wafer is different from a threshold applied to a difference image which is produced by comparing the inspection image and the reference image obtained by imaging central portion of the wafer.
摘要:
In the inspection apparatus for a defect of a semiconductor and the method using it for automatically detecting the defect on a semiconductor wafer and presuming the defect occurrence factor using the circuit design data, a plurality of shapes are formed from the circuit design data by deforming the design data with respect to shape deformation items stipulated for respective defect occurrence factor for comparison with the inspection object circuit pattern. The defect is detected by comparison of the group of shapes formed and the actual pattern. Further, the occurrence factors of these defects are presumed, and the defects are classified according to respective factor.
摘要:
To provide a consistent, high-speed, high-precision measurement method based on an electron beam simulation by reflecting the apparatus characteristics of a CD-SEM in an electron beam simulation, the present invention discloses a method for measuring a measurement target pattern with a CD-SEM, the method comprising the steps of performing an electron beam simulation on various target pattern shapes, which is reflected apparatus characteristic and image acquisition conditions; creating SEM simulated waveforms; storing a combination of the created SEM simulated waveforms and pattern shape information corresponding to the created SEM simulated waveforms as a library; comparing an acquired actual electron microscope image with the SEM simulated waveforms; selecting the SEM simulated waveform that is most similar to the actual electron microscope image; and estimating the shape of the measurement target pattern from the pattern shape information corresponding to the selected SEM simulated waveform.
摘要:
An exposure process monitoring method capable of performing quantitative monitoring of an exposure amount and a focusing position which are major process parameters during exposure using a Levinson phase shift mask in semiconductor lithography processes is disclosed. During exposure using the Levinson phase shift mask, the focus position is influenceable by optical intensity distribution characteristics so that it can vary from its minus (−) to plus (+) directions by in a way depending upon the pitch width and line width of a line-and-space pattern. In such case, there exist a pattern in which the cross-sectional shape of a resist changes from a forward taper to reverse taper and a pattern in which the sectional shape changes from the reverse to forward taper.
摘要:
It is difficult for a material having low resistance to electron beam irradiation to obtain an electron microscopic image having a high S/N ratio. A conventional image smoothing process can improve stability of measurement, but this process has a problem of measurement errors for absolute values, reduction of sensitivity, deterioration of quality of cubic shape information and the like. In the present invention, by performing an image averaging process without deteriorating cubic shape information of a signal waveform in consideration of dimension deviation of a measurement target pattern, measurement stability is compatible with improvement of precision and sensitivity. Accordingly, it is possible to realize measurement of pattern dimensions and shapes with high precision and control of a highly sensitive semiconductor manufacturing process using the measurement.
摘要:
A method of inspecting defects of a plurality of patterns that are formed on a substrate to have naturally the same shape. According to this method, in order to detect very small defects of the patterns with high sensitivity without being affected by irregular brightness due to the thickness difference between the patterns formed on a semiconductor wafer, a first pattern being inspected is detected to produce a first image of the first pattern, the first image is stored, a second pattern being inspected is detected to produce a second image of said second pattern, the stored first image and the second image are matched in brightness, and the brightness-matched first and second images are compared with each other so that the patterns can be inspected.
摘要:
The present invention relates to a method and apparatus for measuring a three-dimensional profile using a SEM, capable of accurately measuring the three-dimensional profile of even a flat surface or a nearly vertical surface based on the inclination angle dependence of the amount of secondary electron image signal detected by the SEM. Specifically, a tilt image obtaining unit obtains a tilt image (a tilt secondary electron image) I(2) of flat regions a and c1 on a pattern to be measured by using an electron beam incident on the pattern from an observation direction φ(2). Then, profile measuring units presume the slope (or surface inclination angle) at each point on the pattern based on the obtained tilt image and integrate successively each presumed slope value (or surface inclination angle value) to measure three-dimensional profiles S2a and S2c. This arrangement allows a three-dimensional profile to be accurately measured.
摘要:
A pattern inspection method and apparatus in which a charged particle beam is irradiated onto a surface of a specimen on which a pattern is formed, plural sensors simultaneously detect secondary particles emanated from the surface of the specimen by the irradiation, signals outputted from each sensor of the plural sensors which simultaneously detect the secondary particles are added, an image of the surface of the specimen on which the pattern is obtained from the added signals, and the image is processed to detect a defect of the pattern.
摘要:
Disclosed herein is a method for manufacturing semiconductor device and a method and apparatus for processing detected defect data, making it possible to quickly infer or determine a process and related manufacturing equipment that causes defects in a fabrication line of semiconductor devices, take remedy action, and achieve a constant and high yield. The method of the invention comprises quantitatively evaluating similarity of a defects distribution on a wafer that suffered abnormal occurrence of defects to inspection results for wafers inspected in the past, analyzing cyclicity of data sequence of evaluated similarity, evaluating relationship between the cyclicity of defects obtained from the analysis and the process method according to each manufacturing equipment in the fabrication line, and inferring or determining a causal process and equipment that caused the defects.