摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the semiconductor device. The method for manufacturing the semiconductor device (100), among other possible steps, includes forming a polysilicon gate electrode over a substrate (110) and forming source/drain regions (170) in the substrate (110) proximate the polysilicon gate electrode. The method further includes forming a blocking layer (180) over the source/drain regions (170), the blocking layer (180) comprising a metal silicide, and siliciding the polysilicon gate electrode to form a silicided gate electrode (150).
摘要:
A method of manufacturing a semiconductor device comprising removing a first oxide layer deposited over a semiconductor substrate, thereby exposing source and drain regions of the substrate. The first oxide layer is configured as an etch-stop for forming silicon nitride sidewall spacers of a gate structure located adjacent to the source and drain regions. The method further comprises depositing a second oxide layer selectively on the exposed source and drain regions and then removing lateral segments of the silicon nitride sidewall spacers.
摘要:
A silicon nitrate layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
摘要:
The present invention provides a method for manufacturing a semiconductor device, a semiconductor device, and a method for manufacturing an integrated circuit including a semiconductor device. The method for manufacturing the semiconductor device, without limitation, may include providing a gate dielectric layer (413, 423) and a gate electrode layer (418, 428) over a substrate (310), and forming a gate sidewall spacer (610, 630) along one or more sidewalls of the gate dielectric layer (413, 423) and the gate electrode layer (418, 428) using a plasma enhanced chemical vapor deposition process, and forming different hydrogen concentration in NMOS and PMOS sidewall spacers (610, 630) using a local hydrogen treatment (LHT) method.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefor, and a method for manufacturing an integrated circuit. The semiconductor device (100), among other possible elements, includes a silicided gate electrode (150) located over a substrate (110), the silicided gate electrode (150) having gate sidewall spacers (160) located on sidewalls thereof. The semiconductor device (100) further includes source/drain regions (170) located in the substrate (110) proximate the silicided gate electrode (150), and silicided source/drain regions (180) located in the source/drain regions (170) and at least partially under the gate sidewall spacers (160).
摘要:
Methods are disclosed for treating deposited gate dielectric materials, in which the deposited dielectric is subjected to one or more non-oxidizing anneals to densify the material, one or more oxidizing anneals to mitigate material defects, and to a nitridation process to introduce nitrogen into the gate dielectric. The annealing may be performed before and/or after the nitridation to mitigate deposition and/or nitridation defects and to densify the material while mitigating formation of unwanted low dielectric constant oxides at the interface between the gate dielectric and the semiconductor substrate.
摘要:
A complementary metal oxide semiconductor (CMOS) device has a substrate 100, a gate structure 108 disposed atop the substrate, and spacers 250, deposited on opposite sides of the gate structure 108 to govern formation of deep source drain regions S, D in the substrate. Spacers 250 are formed of an oxynitride (SiOxNyCz) wherein x and y are non-zero but z may be zero or greater; such oxynitride spacers reduce parasitic capacitance, thus improving device performance. A method of fabricating a portion of a complementary metal oxide semiconductor (CMOS) device involves providing a substrate 100, forming a gate structure 108 over the substrate, depositing a first layer 104 atop the substrate on opposite sides of the gate structure to govern formation of deep source drain regions in the substrate, depositing an oxynitride (SiOxNyCz) layer 250 atop the first layer (in which x and y are non-zero but z may be zero or greater), depositing a second layer 112 atop the oxynitride layer, and depositing a nitride layer 114B atop the second layer.
摘要翻译:互补金属氧化物半导体(CMOS)器件具有衬底100,设置在衬底顶部的栅极结构108和沉积在栅极结构108的相对侧上的间隔物250,以控制衬底中的深源极漏极区S,D的形成 。 间隔物250由氧氮化物(SiO x N y O z C z z)形成,其中x和y不为零,但z可以为零或 更大 这种氧氮化物间隔物减少寄生电容,从而提高器件性能。 制造互补金属氧化物半导体(CMOS)器件的一部分的方法包括提供衬底100,在衬底上形成栅极结构108,在栅极结构的相对侧上沉积衬底顶部的第一层104,以形成 在衬底中的深源极漏极区域,在第一层的顶部上沉积氧氮化物(SiO x N x N z C z z)层250(其中x 并且y不为零但z可以为零或更大),在氧氮化物层的顶部沉积第二层112,以及在第二层顶上沉积氮化物层114B。
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively apply strain to multiple regions of a semiconductor device. A semiconductor device having one or more regions is provided (102). A strain inducing liner is formed over the semiconductor device (104). A selection mechanism, such as a layer of photoresist or UV reflective coating is applied to the semiconductor device to select a region (106). The selected region is treated with a stress altering treatment that alters a type and/or magnitude of stress produced by the selected region (108).
摘要:
A method for making PMOS and NMOS transistors 60, 70 on a semiconductor substrate 20 that includes having a gate protection layer 210 over the gate electrode layer 110 during the formation of source/drain silicides 120. The method may include implanting dopants into a gate polysilicon layer 115 before forming the protection layer 215.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes providing a capped polysilicon gate electrode (290) over a substrate (210), the capped polysilicon gate electrode (290) including a buffer layer (260) located between a polysilicon gate electrode layer (250) and a protective layer (270). The method further includes forming source/drain regions (710) in the substrate (210) proximate the capped polysilicon gate electrode (290), removing the protective layer (270) and the buffer layer (260), and siliciding the polysilicon gate electrode layer (250) to form a silicided gate electrode (1110).