Abstract:
Techniques relate to forming an integrated circuit. Trench contacts are formed on top of at least one source and drain of an intermediate structure. An interlayer dielectric is formed on top of the intermediate structure. A trench is cut through the interlayer dielectric, through at least one of the trench contacts, down to a shallow trench isolation area. The trench is filled with a filling material. Upper contacts are formed on top of the trench contacts in the interlayer dielectric. A first metal layer pattern is patterned such that a separation is formed by a filling material width of the filling material. First metal layers are formed according to the first metal layer pattern, where tips of the first metal layers are aligned to the filling material that fills the trench, such that the tips of the first metal layers are separated by the filling material width.
Abstract:
Techniques relate to forming an integrated circuit. Trench contacts are formed on top of at least one source and drain of an intermediate structure. An interlayer dielectric is formed on top of the intermediate structure. A trench is cut through the interlayer dielectric, through at least one of the trench contacts, down to a shallow trench isolation area. The trench is filled with a filling material. Upper contacts are formed on top of the trench contacts in the interlayer dielectric. A first metal layer pattern is patterned such that a separation is formed by a filling material width of the filling material. First metal layers are formed according to the first metal layer pattern, where tips of the first metal layers are aligned to the filling material that fills the trench, such that the tips of the first metal layers are separated by the filling material width.
Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
A memory device and formation thereof. The memory device includes a stack of memory dies. Each memory die in the stack of memory dies includes two or more layers of memory devices.
Abstract:
An approach to forming a semiconductor device where the semiconductor device includes a first power rail with one or more vertically stacked contact vias connecting to the first power rail to a portion of a first de-coupling capacitor. The semiconductor device includes the first de-coupling capacitor in a first portion of a semiconductor substrate in a first gate cut trench.
Abstract:
A semiconductor structure comprises a substrate defining a first axis and a second axis orthogonal to the first axis, a first nanosheet region disposed on the substrate and defining a first channel width along the second axis, a first gate disposed around the first nanosheet region, a second nanosheet region disposed on the substrate and defining a second channel width along the second axis less than the first channel width of the first nanosheet region and a second gate disposed around the second nanosheet region.
Abstract:
A field effect device is provided. The field effect device includes an active gate structure, a gate contact within the active gate structure, wherein the gate contact is the same height as the active gate structure, and a gate cut dielectric on opposite sides of the gate contact and active gate structure.
Abstract:
A field effect transistor is provided. The field effect transistor includes a first source/drain on a substrate, a second source/drain on the substrate, and a channel region between the first source/drain and the second source/drain. The field effect transistor further includes a metal liner on at least three sides of the first source/drain and/or the second source/drain, wherein the metal liner covers less than the full length of a sidewall of the first source/drain and/or the second source/drain. The field effect transistor further includes a metal-silicide between the metal liner and the first source/drain and/or the second source/drain, and a conductive contact on the metal liner on the first source/drain and/or the second source/drain, wherein the conductive contact is a conductive material different from the conductive material of the metal liner.
Abstract:
A resistive random access memory (ReRAM) device is provided. The ReRAM device includes a stack structure including a first electrode, a metal oxide layer in contact with the first electrode, and a second electrode in contact with the metal oxide layer. A portion of the stack structure is modified by ion implantation, and the modified portion of the stack structure is offset from edges of the stack structure.
Abstract:
A device includes an electronic component, and the electronic component includes a first pad, a second pad, and a strip connecting the first pad and the second pad. The device further includes a first electrode in contact with the first pad and a second electrode in contact with the second pad. The electronic component is made of a phase change material. At least one of the first electrode and the second electrode is coated with a material that is configured to increase a difference in workfunction between the first electrode and the second electrode.