Abstract:
A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
Abstract:
A multi-rack assembly is provided which includes first and second electronics racks. The first electronics rack includes one or more cooling units disposed within the first electronics rack, which are coupled in fluid communication with a primary coolant loop of the first electronics rack to, at least in part, provide cooled coolant to the primary coolant loop and facilitate cooling one or more first rack electronic components. The second electronics rack includes a secondary coolant loop coupled in fluid communication with the cooling unit(s) disposed within the first electronics rack. The multi-rack assembly further includes a controller to automatically provide cooled coolant to the secondary coolant loop, and wherein the controller controls flow of cooled coolant from the cooling unit(s) to the secondary coolant loop depending, at least in part, on cooling requirements of the first electronics rack.
Abstract:
A method of fabricating a cooling unit is provided to facilitate cooling coolant passing through a coolant loop. The cooling unit includes one or more heat rejection units and an elevated coolant tank. The heat rejection unit(s) rejects heat from coolant passing through the coolant loop to air passing across the heat rejection unit. The heat rejection unit(s) includes one or more heat exchange assemblies coupled to the coolant loop for at least a portion of coolant to pass through the one or more heat exchange assemblies. The elevated coolant tank, which is elevated above at least a portion of the coolant loop, is coupled in fluid communication with the one or more heat exchange assemblies of the heat rejection unit(s), and facilitates return of coolant to the coolant loop at a substantially constant pressure.
Abstract:
A method is provided for facilitating powering and cooling of one or more electronics racks. The method includes: providing a frame; associating at least one bulk power assembly with the frame, the at least one bulk power assembly being configured to provide power to the electronics rack(s), wherein the frame with the associated one or more bulk power assemblies is distinct from the electronics rack(s); and associating one or more heat exchange assemblies with the frame, the heat exchange assembly(ies) being configured to cool system coolant provided to the electronics rack(s). In operation, heat is transferred by the heat exchange assembly(ies) from the system coolant to a facility coolant, and the frame with the associated bulk power assembly(ies) and associated heat exchange assembly(ies) provides both power and cooling to the electronics rack(s).
Abstract:
A heat sink and method of fabrication are provided for removing heat from an electronic component(s). The heat sink includes a heat sink base and frame. The base has a first coefficient of thermal expansion (CTE), and includes a base surface configured to couple to the electronic component to facilitate removal of heat. The frame has a second CTE, and is configured to constrain the base surface in opposing relation to the electronic component, wherein the first CTE is greater than the second CTE. At least one of the heat sink base or frame is configured so that heating of the heat sink base results in a compressive force at the base surface of the heat sink base towards the electronic component that facilitates heat transfer from the electronic component. A thermal interface material is disposed between the base surface and the electronic component.
Abstract:
Cooling apparatuses, cooled electronic modules and methods of fabrication are provided for fluid immersion-cooling of an electronic component(s). The method includes, for instance: securing a housing about an electronic component to be cooled, the housing at least partially surrounding and forming a compartment about the electronic component to be cooled; disposing a fluid within the compartment, wherein the electronic component to be cooled is at least partially immersed within the fluid, and wherein the fluid comprises water; and providing a deionizing structure within the compartment, the deionizing structure comprising deionizing material, the deionizing material ensuring deionization of the fluid within the compartment, wherein the deionizing structure is configured to accommodate boiling of the fluid within the compartment.
Abstract:
A cooling apparatus and method are provided for cooling one or more electronic components of an electronic subsystem of an electronics rack. The cooling apparatus includes a heat sink, which is configured to couple to an electronic component, and which includes a coolant-carrying channel for coolant to flow therethrough. The coolant provides two-phase cooling to the electronic component, and is discharged from the heat sink as coolant exhaust which comprises coolant vapor to be condensed. The cooling apparatus further includes a node-level condensation module, associated with the electronic subsystem, and coupled in fluid communication with the heat sink to receive the coolant exhaust from the heat sink. The condensation module is liquid-cooled, and facilitates condensing of the coolant vapor in the coolant exhaust. A controller automatically controls the liquid-cooling of the heat sink and/or the liquid-cooling of the node-level condensation module.
Abstract:
A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
Abstract:
A method is provided for facilitating extraction of heat from a heat-generating electronic component. The method includes providing a heat sink, the heat sink including a thermally conductive structure which has one or more coolant-carrying channels and one or more vapor-condensing channels. A membrane is disposed between the coolant-carrying channel(s) and the vapor-condensing channel(s). The membrane includes at least one vapor-permeable region, at least a portion of which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s) to the vapor-condensing channel(s). The heat sink further includes one or more coolant inlets coupled to provide a first liquid coolant flow to the coolant-carrying channel(s), and a second liquid coolant flow to condense vapor within the vapor-condensing channel(s).
Abstract:
An air-to-coolant heat exchanger for an electronics rack is provided, which includes first and second tube segments, one or more connector segments, and a plurality of thermally conductive fins attached to the tube segments. The first tube segment includes a first inner tube positioned within a first outer tube, defining a first inner coolant-carrying channel and first outer coolant-carrying channel, and the second tube segment has a second inner tube positioned within a second outer tube, defining a second inner coolant-carrying channel and second outer coolant-carrying channel. The connector segment(s) couples in fluid communication at least one of the first and second inner coolant-carrying channels, or the first and second outer coolant-carrying channels. The heat exchanger is coupled to separately receive a first coolant and a second coolant, with the first coolant passing through the inner channels, and the second coolant through the outer channels.