摘要:
This disclosure describes systems, methods, and devices related to long training field (LTF) sequence security protection. A device may determine a null data packet (NDP) frame comprising one or more fields. The device may determine a first long training field (LTF) and a second LTF, the first LTF and the second LTF being associated with a first frequency band of the NDP frame, wherein time domain LTF symbols of first LTF and the second LTF are generated using different LTF sequences. The device may determine a third LTF and a fourth LTF, the third LTF and the fourth LTF being associated with the a second frequency band of the NDP frame, wherein time domain LTF symbols of third LTF and the fourth LTF are generated using different LTF sequences. The device may cause to send the NDP frame to an initiating or a responding device. The device may cause to send a location measurement report (LMR) frame to the initiating or the responding device, wherein the LMR comprises timing information associated with the first frequency band and the second frequency band.
摘要:
Embodiments herein relate to wireless communication using combined channel training and physical layer header (SIG) signaling. Devices that comply with the 802.11ax or High Efficiency WLAN (HEW) standard may generate and transmit packets that include such combined information. The combined information may be beamformed to a receiver device via an OFDM signal, which may be decoded by the receiver device to obtain subsequent data included in the signal. For example, initial training symbols associated with channel training subcarriers in the signal may be detected and used to perform a rough estimate of the channel. The rough estimate may thereafter be refined using data symbols detected from adjacent data subcarriers using the channel training symbols. In this way, data subcarriers may also be used to determine a channel response along with channel training subcarriers. Channel training information may be transmitted with data, such as user-specific information, in a single symbol.
摘要:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.
摘要:
Disclosed in some examples are devices (e.g., APs, STAs, and the like), methods, and machine readable mediums which provide for proper channel estimation and frame reception in Uplink MU-MIMO systems by changing the way transmission parameters from the VHT-SIG-A are communicated to the recipients in the preamble. The transmission parameters contained in the VHT-SIG-A field may be communicated to the STAs in advance of the MU-MIMO transmissions. In other examples the transmission parameters contained in the VHT-SIG-A field may be moved to locations in the preamble that come after the VHT-STF and VHT-LTF so that the transmission parameters may be decoded.
摘要:
Methods, devices and systems for jointly encoding allocation information of one or more wireless communication stations in a common portion of a physical layer header are disclosed. In some examples, a wireless device may: generate allocation information associated with one or more wireless communication stations; encode the allocation information into the common portion of the physical layer header; and transmit the physical layer header to the one or more wireless communication stations.
摘要:
Apparatuses and methods for channel state information reference signal (CSI-RS) configuration in distributed remote radio head (RRH) systems are described. A transmission point selection module can receive a user equipment (UE) signal via a transmission point from a plurality of transmission points sharing a single cell identification. A downlink transmission point can be selected based on the UE signal. The UE can then be configured to report CSI-RS measurements for the selected downlink transmission point.
摘要:
Technology for channel state information (CSI) feedback in a multiple-input multiple-output (MIMO) communication system is disclosed. A method comprises receiving, at a mobile device, a dynamic channel state information (CSI) feedback switch signal from a transmission station that identifies a selected CSI feedback state for the mobile device. A process for selecting a precoding matrix indicator (PMI) and a rank indicator is identified based on the CSI feedback switch signal as either a process configured for MU-MIMO reception or single-user (SU) MIMO reception of a downlink signal at the mobile device.
摘要:
Example systems, methods, and devices for efficient indication of bandwidth and stream allocation are discussed. In one embodiment, a method for indication of bandwidth allocation in a wireless network can include partitioning, by a network device, a bandwidth of a wireless signal into a plurality of subband units, assigning one or more switch bits between adjacent subband units, and allocating one or more modified subband units to one or more users of the network. In another embodiment, a method for stream allocation can include partitioning, by a network device, a spatial stream of a wireless signal into a plurality of spatial streams, assigning one or more switch bits between adjacent spatial streams, and allocating one or more modified spatial streams to one or more users of the network. Certain methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
摘要:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
摘要:
Embodiments of user equipment (UE) and methods for codebook subsampling for enhanced 4TX codebooks in 3GPP LTE wireless networks are generally described herein. In some embodiments, a physical uplink control channel (PUCCH) is configured for transmission of channel state information (CSI) feedback including a rank indicator (RI) and a precoding matrix (W1). The rank indicator (RI) and a precoding matrix (W1) are jointly encoded and codebook subsampling is performed for the enhanced 4Tx codebook for at least one of: PUCCH report type 5 (RI/1st PMI) in PUCCH 1-1 submode 1; PUCCH report type 2c (CQI/1st PMI/2nd PMI) in PUCCH 1-1 submode 2; and PUCCH report type 1a (subband CQI/2nd PMI) in PUCCH 2-1.