Abstract:
Products, such as devices, prostheses, and materials, whose surfaces have been modified in order to impart beneficial properties to these products are disclosed. The surface-modified products have improved biocompatibility compared to a corresponding product that lacks the modification. Following implantation in a subject, the surface-modified products induce a lower foreign-body response, compared to a corresponding unmodified product.
Abstract:
Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
Abstract:
Compositions and methods for modified dendrimer nanoparticle (“MDNP”) delivery of therapeutic, prophylactic and/or diagnostic agent such as large repRNA molecules to the cells of a subject have been developed. MDNPs efficiently drive proliferation of antigen-specific T cells against intracellular antigen, and potentiate antigen-specific antibody responses. MDNPs can be multiplexed to deliver two or more different repRNAs to modify expression kinetics of encoded antigens and to simultaneous deliver repRNAs and mRNAs including the same UTR elements that promote expression of encoded antigens.
Abstract:
Methods of transfecting cells in vivo, by administering an injectable pharmaceutical composition including a genome editing composition and a pharmaceutically acceptable carrier to a subject by hydrodynamic injection into a vessel of the subject are disclosed. Typically, the pharmaceutical composition is administered in a volume and at rate of injection suitable to transfect target eukaryotic cells in the subject with an effective amount of the genome editing composition to alter the genome of the target cells. In preferred embodiments the subject is a mammal, such as rodent, or a primate such as a human. The methods can be used to treat one or more symptoms of a genetic disease or condition.
Abstract:
Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
Abstract:
Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
Abstract:
Water-responsive composite materials are provided containing a polymeric matrix and a water-responsive gel integrated into the polymeric matrix. The water-responsive gel can include a polyol or an alkoxylated polyol crosslinked by reversibly hydrolysable bonds, such as borate ester bonds. The polymeric matrix can include conjugated polymers such as poly(pyrrole) containing polymers. The composite material is capable of rapid actuation in the presence of a water gradient and can exhibit power densities greater than 1 W/kg. Methods of making water-responsive composite materials are provided, including by electropolymerization. Devices containing water-responsive composite materials are provided for sensing, locomotion, and power generation.
Abstract:
The present disclosure relates to compositions and methods for modifying a gene sequence, and for systems for delivering such compositions. For example, the disclosure relates to modifying a gene sequence using a CRISPR-Cas9 or other nucleic acid editing system, and methods and delivery systems for achieving such gene modification, such as viral or non-viral delivery systems.
Abstract:
Circular RNA and methods and constructs for engineering circular RNA are disclosed. In some embodiments, the circular RNA includes the following elements arranged in the following sequence: a) an adjacent exon sequence of a 3′ Group I self-splicing intron-exon, b) an internal ribosome entry site (IRES), c) a protein coding region or noncoding region, and d) an adjacent exon sequence of a 5′ Group I self-splicing intron-exon.
Abstract:
Circular RNA and methods and constructs for engineering circular RNA are disclosed. In some embodiments, the circular RNA includes the following elements arranged in the following sequence: a) a 3′ Group I self-splicing intron fragment, b) an internal ribosome entry site (IRES), c) a protein coding region or noncoding region, and d) a 5′ Group I self-splicing intron fragment.