Abstract:
Methods, systems, and devices for cell data bulk reset are described. In some examples, a logic state (e.g., a first logic state) may be written to one or more memory cells based on an associated memory device transitioning power states. To write the first logic state to the memory cells, a first subset of digit lines may be driven to a first voltage and a plate may be driven to a second voltage. While the digit lines and plate are driven to the respective voltages, one or more word lines may be driven to the second voltage. In some instances, the word lines may be driven to the second voltage based on charge sharing occurring between adjacent word lines.
Abstract:
Methods, systems, and devices for cell data bulk reset are described. In some examples, a write pulse may be applied to one or more memory cells based on an associated memory device transitioning power states. To apply the wire pulse, a first subset of digit lines may be driven to a first voltage and a plate may be driven to a second voltage or a third voltage. While the digit lines and plate are driven to the respective voltages, one or more word lines may be driven to the second voltage or the third voltage. In some instances, the digit lines may be selected (e.g., driven) according to a pattern.
Abstract:
Memory devices might include a controller configured to cause the memory device to apply a first plurality of incrementally increasing programming pulses to control gates of a particular plurality of memory cells selected for programming to respective intended data states, determine a first occurrence of a criterion being met, store a representation of a voltage level corresponding to a particular programming pulse in response to the first occurrence of the criterion being met, set a starting programming voltage for a second plurality of incrementally increasing programming pulses in response to the stored representation of the voltage level corresponding to the particular programming pulse, and apply the second plurality of incrementally increasing programming pulses to control gates of a different plurality of memory cells selected for programming to respective intended data states.
Abstract:
Methods, systems, and devices for biasing a memory cell during a read operation are described. For example, a memory device may bias a memory cell to a first voltage (e.g., a read voltage) during an activation phase of a read operation. After biasing the memory cell to the first voltage, the memory device may bias the memory cell to a second voltage greater than the first voltage (e.g., a write voltage) during the activation phase of the read operation. After biasing the memory cell to the second voltage, the memory device may initiate a refresh phase of the read operation. Based on a value stored by the memory cell prior to biasing the memory cell to the first voltage, the memory device may initiate a precharge phase of the read operation.
Abstract:
Methods of operating a memory device include programming a page of a memory block of the memory device using a particular starting programming voltage, determining a programming voltage indicative of a programming efficiency of the page of the memory block during programming of the page of the memory block, storing a representation of the programming voltage indicative of the programming efficiency of the page of the memory block, setting a starting programming voltage for a different page of the memory block in response to the stored representation of the programming voltage indicative of the programming efficiency of the page of the memory block, and programming the different page of the memory block using its starting programming voltage.
Abstract:
Methods of operating a memory device include programming a page of a memory block of the memory device using a particular starting programming voltage, determining a programming voltage indicative of a programming efficiency of the page of the memory block during programming of the page of the memory block, storing a representation of the programming voltage indicative of the programming efficiency of the page of the memory block, setting a starting programming voltage for a different page of the memory block in response to the stored representation of the programming voltage indicative of the programming efficiency of the page of the memory block, and programming the different page of the memory block using its starting programming voltage.
Abstract:
A memory controller can provide current to a heater in a flash memory to reduce cycling induced errors. If necessary, after heating, the memory may be refreshed. In non-battery powered systems, data may be removed from the memory prior to heating and restored to the memory after heating.
Abstract:
This disclosure relates to avoiding a hard error in memory during write time by shifting data to be programmed to memory to mask the hard error. In one implementation, a method of programming data to a memory array includes obtaining error data corresponding to a selected memory cell, shifting a data pattern such that a value to be stored by the selected memory cell matches a value associated with a hard error, and programming the shifted data pattern to memory array such that the value programmed to the selected memory cell matches the value associated with the hard error.