摘要:
A method of etching multi-layer films, the method including: (1) etching a plurality of layers according to etching parameters, (2) determining a plurality of optical characteristics each associated with one of the plurality of layers and determined during the etching of the associated one of the plurality of layers, and (3) determining dynamic etch progressions each based on one of the plurality of optical characteristics that is associated with a particular one of the plurality of layers undergoing the etching.
摘要:
A method for cleaning semiconductor substrates includes a DI water clean operation that uses a spin speed no greater than 350 rpm. The cleaning method may include additional cleaning operations such as an organic clean, an aqueous chemical clean or a DI water/ozone clean. The cleaning method may be used to clean substrates after the conclusion of an etching procedure which exposes a single film between a Cu-containing conductive material and the environment. The spin speed of the DI water clean operation prevents copper corrosion due to breakdown of the film that separates the Cu-containing conductive material from the environment.
摘要:
A method if provided for improving a photolithographic patterning process in a dual damascene process by forming a resinous plug in a via opening to prevent out diffusion of nitrogen containing species from a low-k IMD layer in subsequent lithographic patterning and RIE etching processes to form a trench opening formed substantially over the via opening.
摘要:
A method is described for cleaning freshly etched dual damascene via openings and preparing them for copper fill without damage or contamination of exposed organic or other porous low-k insulative layers. The method is entirely dry and does not expose the porous materials to contamination from moisture or solvents. The method is effective for removing all traces of residual polymer deposits from an in-process substrate wafers after via or damascene trench etching. The method employs an in-situ three-step treatment comprising a first step of exposing the electrically biased substrate wafer to a O2/N2 ashing plasma to remove photoresist and polymers, a second step immediately following the first step of remove silicon nitride etch stop layers, and a final step of treating the wafer with H2/N2 to remove copper polymer deposits formed during nitride removal. The H2/N2 plasma is capable of removing the difficult polymer residues which are otherwise only removable by wet stripping procedures. The H2/N2 plasma is not harmful to exposed porous low-k dielectric layers as well as copper metallurgy.
摘要翻译:描述了一种用于通过开口清洁新鲜蚀刻的双镶嵌件的方法,并且它们用于铜填充而不损坏或污染暴露的有机或其它多孔低k绝缘层。 该方法是完全干燥的,并且不会使多孔材料暴露于水分或溶剂的污染物中。 该方法对于在通孔或镶嵌沟槽蚀刻之后从工艺衬底晶片去除残余聚合物沉积物的所有迹线是有效的。 该方法采用原位三步处理,其包括将电偏置的衬底晶片暴露于O 2 / N 2灰分等离子体以去除光致抗蚀剂和聚合物的第一步骤,紧接着在去除氮化硅蚀刻停止层的第一步骤之后的第二步骤 ,以及用H2 / N2处理晶片以除去在氮化物除去期间形成的铜聚合物沉积物的最后步骤。 H 2 / N 2等离子体能够去除困难的聚合物残余物,否则其仅可通过湿式剥离方法除去。 H2 / N2等离子体对暴露的多孔低k电介质层以及铜冶金无害。
摘要:
A process for fabricating an aluminum based interconnect structure, using a plasma treated photoresist shape as an etch mask, has been developed. The process features treating a photoresist shape, to be used as an etch mask during RIE patterning procedures, in a nitrogen containing plasma. The plasma nitrogen treated photoresist shape is eroded at a decreased rate, when compared to counterpart non-treated photoresist shapes, during the RIE procedure used to fabricate the aluminum based interconnect structure. The increased etch rate ratio, between layers used for the interconnect structure, and the plasma treated photoresist shape, allows thinner photoresist shapes to be used, and therefore allows narrower lines and spaces to be achieved.
摘要:
A new method of etching metal lines using HCl in the overetch step to prevent undercutting of the metal lines is described. Semiconductor device structures are provided in and on a semiconductor substrate. The semiconductor device structures are covered with an insulating layer. A barrier metal layer is deposited overlying the insulating layer. A metal layer is deposited overlying the barrier metal layer. A hard mask layer is deposited overlying the metal layer. The hard mask layer is covered with a layer of photoresist which is exposed, developed, and patterned to form the desired photoresist mask. The hard mask layer is etched away where it is not covered by the photoresist mask leaving a patterned hard mask. The metal layer is etched away where it is not covered by the patterned hard mask to form the metal lines. Overetching is performed to remove the barrier layer where it is not covered by the hard mask wherein HCl gas is one of the etchant gases used in the overetching whereby hydrogen ions from the HCl gas react with the metal layer and the barrier metal layer to form a passivation layer on the sidewalls of the metal lines thereby preventing undercutting of the metal lines resulting in metal lines having a vertical profile. The photoresist mask is removed and fabrication of the integrated circuit device is completed.
摘要:
A method of forming an etch stop layer 40 above a fuse 16 in a fuse opening (or window) 92 using a specialized 2 stage etch process. The invention has two important features: First, the etch stop layer 40 is formed from a polysilicon layer (P2 or P4) that is used to fabricate semiconductor devices on a substrate. The etch stop layer 40 is preferably formed of polysilicon layer to is used to from a contact to the substrate 10 (P2) or to form part of a capacitor (P4). Second, a specialized two stage etch process is used where the second stage etches the etch stop layer 40 while simultaneously forming a passivation layer 114 over a metal pad 85. The method comprises: forming fuses 16 over said isolation regions 10 over the fuse area 15; forming a first dielectric layer 30 overlying the fuses 16; forming an etch stop layer 40 over the first dielectric layer 30; forming an insulating layer 43 over the etch stop layer; forming a fuse opening 92 in the insulating layer 43 by etching, in a first etch stage, thorough fuse photoresist openings 90A and stopping the first etch stage on the etch stop layer 40; and etching though the etch stop layer 40 in the fuse opening 92 in a second etch stage.
摘要:
A method for forming a patterned silicon containing dielectric layer within a microelectronics fabrication. There is first provided a substrate employed within a microelectronics fabrication. There is then formed over the substrate a silicon containing dielectric layer. There is then formed upon the silicon containing dielectric layer a hard mask layer, where the hard mask layer leaves exposed a portion of the silicon containing dielectric layer. There is then etched partially through a first plasma etch method the silicon containing dielectric layer to form a partially etched silicon containing dielectric layer. The first plasma etch method employs a first etchant gas composition comprising a first fluorocarbon etchant gas which predominantly forms a fluoropolymer layer upon at least the hard mask layer. Finally, there is then etched through a second plasma etch method the partially etched silicon containing dielectric layer to form a patterned silicon containing dielectric layer. The second plasma etch method employs a second etchant gas composition comprising a second fluoro etchant gas which predominantly etches the partially etched silicon containing dielectric layer in forming the patterned silicon containing dielectric layer.
摘要:
The present invention is a method for forming a shallow trench with tapered profile and round corners for the application of shallow trench isolation (STI). This invention utilizes a multiple-step dry etching process with reduced RF power and increased pressure to etch a shallow trench. This takes advantage of different degree of polymer deposition in different steps by varing the pressure and the RF power. Thus, a shallow trench with tapered profile and round corners is achieved.
摘要:
A method of forming an integrated circuit is disclosed. A second material layer is formed on a first material layer. A patterned mask layer having a plurality of first features with a first pitch P1 is formed on the second material layer. The second material layer is etched by using the patterned mask layer as a mask to form the first features in the second material layer. The patterned mask layer is trimmed. A plurality of dopants is introduced into the second material layer not covered by the trimmed patterned mask layer. The trimmed patterned mask layer is removed to expose un-doped second material layer. The un-doped second material layer is selectively removed to form a plurality of second features with a second pitch P2. P2 is smaller than P1.