Abstract:
A nitriding method includes the steps of nitriding an object held under a nitriding gas atmosphere in a sealed furnace and applying vibration energy to one or both of the nitriding gas and the object W to facilitate nitriding. A nitriding apparatus includes a nitriding furnace for holding an object W to be nitrided in a sealed manner, means 30 for supplying a nitriding gas to the furnace, and means 2 for applying vibration to the atmosphere gas in the furnace 1 to faciliate nitriding. According to the method or apparatus, nitriding-resistant or complex-shaped materials can be nitrided at high efficiency and a nitrided layer can be formed at a lower temperature for a shorter time as compared with conventional processes.
Abstract:
A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.
Abstract:
A continuous process for oxidation, in which the substance to be oxidized and the oxidizing gas flow countercurrently and the oxidizing gas is mixed with a split stream containing preoxidized substance before it enters the reactor. A Venturi nozzle is particularly suitable as the mixing organ in the reactor.
Abstract:
Ceramics of the composition:Ln1-xSryCax-yMO3-nullwhere Ln is an element selected from the f block lanthanides and yttrium or mixtures thereof; M is an element selected from the d block transition metals or mixtures thereof; 0.1nullxnull0.4; 0.01nullynull0.25 and null is a number that varies to maintain charge neutrality are provided along with methods of their use. These ceramics are useful in making and using gas-impermeable ceramic membranes that exhibit high electronic and ionic conductivity, low coefficients of expansion and high chemical and thermal stability under catalytic membrane reactor conditions. The ceramics provided are particularly useful for promotion of oxidation-reduction reactions and for separating molecular oxygen from oxygen containing gases.
Abstract translation:陶瓷的组成:<段落lvl =“0”> Ln1-xSryCax-yMO3-delta in-line-formula>其中Ln是从f块中选择的元素镧系元素和钇或混合物 的; M是选自d嵌段过渡金属或其混合物的元素; 0.1 <= x <= 0.4; 0.01 <= y <= 0.25,并且delta是维持电荷中性而变化的数字及其使用方法。 这些陶瓷可用于制造和使用气体不可渗透的陶瓷膜,其在催化膜反应器条件下表现出高电子和离子电导率,低膨胀系数和高的化学和热稳定性。 提供的陶瓷对于促进氧化还原反应和从含氧气体中分离分子氧是特别有用的。
Abstract:
An osmotic device that, following the imbibition water vapor, provides for the controlled release of a beneficial agent to a non-aqueous environment. The device comprises a hydrophilic formulation and a beneficial agent, surrounded by a wall. The wall is formed at least in part of a semipermeable hydrophobic microporous membrane having an average pores size between about 0.1 .mu.m and 30 .mu.m. The pores are substantially filled with a gas phase. The hydrophobic membrane is permeable to water in the vapor phase and the hydrophobic membrane is impermeable to an aqueous medium at a pressure less than about 100 Pa. The beneficial agent is released, for example, by osmotic pumping or osmotic bursting upon imbibition of sufficient water vapor into the hydrophilic formulation. The high water fluxes attendant with these vapor-permeable hydrophobic membranes facilitate the delivery of large quantities of beneficial agents without requiring large surface areas (quantities) of hydrophobic microporous membrane. In addition, use of vapor-permeable hydrophobic microporous membranes allow osmotic devices to be used in environments having limited water availability, such as air or soil.
Abstract:
The process that involves liquid phase catalytic oxidation of a mono- or poly-substituted alkyl aromatic compound comprises: (i) microdispersion of the air in the reactor at a pressure between 15 and 25 atmospheres and at a rate between 200 and 500 kg/sec.m.sup.2 ; and (ii) recycling the catalyst by evaporation of the purge that contains it and leaching the resulting paste with distilled water at 20.degree.-40.degree. C. to dissolve the catalyst separating it from the rest of the components. Aromatic carboxylic acids are basic products used in a large number of industrial fields.
Abstract:
Apparatus for optimizing gas-liquid interfacial contact for molecular mass transfer between gas and liquid comprises a gas-liquid contactor assembly including a hollow porous tube surrounded by an outer jacket defining a gas plenum between the jacket and the porous tube; a liquid feed assembly including a nozzle for injecting liquid into the porous tube in a spiraling flow pattern around and along the porous tube; a gas-liquid separator assembly at the first end of the porous tube including a nonporous degassing tube coaxially aligned with and connected to the porous tube, a gas outlet port coaxially aligned with the degassing tube to receive a first portion of gas flowing from the degassing tube, a first gas duct coaxially aligned with and connected to the gas outlet duct to convey the first portion of gas therefrom; a liquid collection assembly; and a second gas discharge assembly to collect and convey gas from the first end of the porous tube. A method of optimizing gas-liquid interfacial contact comprises the general steps of introducing a stream of liquid to the hollow interior of a cylindrical porous tube in a thin film following a spiral flow pattern around and along the wall of the tube; controlling the physical characteristics of the liquid film and the flow pattern followed by the film through the tube; sparging gas through the wall of the tube and into the liquid film at a preselected flow rate so as to create a two phase gas-liquid froth around the wall of the tube and a discrete column of gas in the central portion of the tube; maintaining the froth flow in a radial force field so as to prevent mixing of the froth and gas in the central column; removing gas forming the column from both ends of the tube; and removing liquid from the tube.
Abstract:
Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.
Abstract:
An apparatus for producing a highly uniform mixture of a first solution with two or more solute-containing solutions comprises a reaction vessel with a porous member located therein. The porous member, whic may be a membrane or a plurality of fine tubes, is located within the vessel below the surface of the first solution. One or more solute-containing solutions are rapidly and uniformly introduced into the first solution through the porous member. The solute containing solutions diffuse rapidly into the first solution through the openings in the porous member, mixing evenly to produce a uniform composition.
Abstract:
There is provided an apparatus for suspension polymerization to produce polymer particles having uniform size. The apparatus has a droplet forming device with at least one orifice and a recycle line which recycles the aqueous dispersion medium through the droplet forming device, a first reactor and a second reactor. The apparatus can produce polymer particles having uniform particle size.