Abstract:
An exhaust gas purifying apparatus for an internal combustion engine includes plural catalysts provided in parallel. In a case where temperatures of the catalysts need to be raised, a catalyst is selected from among the catalysts and the exhaust gas is allowed to flow in the selected catalyst. In addition, the temperature of the selected catalyst is raised without using a reducing agent when the temperatures of the catalysts are lower than a temperature range in which the reducing agent can be purified. Alternatively, the reducing agent is supplied to the selected catalyst so as to raise the temperature thereof when the temperatures of the catalysts are equal to or higher than the temperature at which the reducing agent can be purified.
Abstract:
A method and apparatus controls an internal combustion engine of a vehicle in which an exhaust purifying catalyst capable of storing oxygen is provided in an exhaust system of the engine. The internal combustion engine is adapted to be temporarily stopped when a predetermined condition for stopping the engine is satisfied, and resumes its operation when the predetermined condition is eliminated. The internal combustion engine is operated so as to reduce an amount of oxygen stored in the exhaust purifying catalyst during a temporary stoppage of the engine, before fuel starts being burned for resuming the operation of the engine.
Abstract:
It is an object of the present invention to contribute to prevention of worsening an exhaust gas emission at the time of cold starting up of an internal combustion engine by providing a technology for accurately determining the degradation of an exhaust gas purifying catalyst provided in an exhaust passage of the internal combustion engine, specifically, the degradation of a low temperature activation capability of the exhaust gas purifying catalyst. In order to achieve this object, the catalyst degradation detecting device of the internal combustion engine of the present invention includes an adsorbent provided in the exhaust passage at downstream of the exhaust gas purifying catalyst, for adsorbing a predetermined component contained in the exhaust gas when a temperature is lower than a predetermined temperature range, and desorbing the adsorbed predetermined component when the temperature is within the predetermined temperature range; an adsorbing amount detector for detecting the amount of the predetermined component adsorbed in the adsorbent; and a catalyst degradation determining device for determining the degradation of the exhaust gas purifying catalyst based on a predetermined component adsorbing amount detected by the adsorbing amount detector.
Abstract:
Oxides of nitrogen are adsorbed onto the surfaces of gas passages (68) in a bed (57, 100) that has relative rotation with respect to a gas inlet distributor (76, 101). The manifold has a baffle (85) or ribs (121, 122) that causes constantly flowing engine exhaust (53) to enter the gas passages over a large portion of a revolution of the adsorption bed or the distributor, and causes constantly flowing regeneration gas (54) to thereafter pass through those passages during a small portion of each revolution. The passages may be formed by planar (66a) or helical (66b) radial walls (66), a serpentine wall (70), a monolith (126), or a honeycomb (127). Either the distributor (101) or the bed (57) may be rotated to distribute the gases.
Abstract:
The present invention provides a system comprising an atomizer for producing a mist of sub-micron sized fluid droplets. Also provided by the present invention are fluid delivery systems, a system for treating an exhaust stream by injecting an atomized spray, a catalytic system for treating at least one chemical species, and a system for humidifying an air stream for use in fuel cell.
Abstract:
In an internal combustion engine (100) provided with an NOX absorbing reduction catalyst (2) in an exhaust gas passage (1), there are arranged: an oxygen sensor (3) which is mounted downstream of the NOX absorbing reduction catalyst (2) in the exhaust gas passage (1); and a determination means for determining a condition of degradation of the NOX absorbing reduction catalyst (2) on the basis of a time length, during which a voltage value, having a small amount of variation before the voltage value outputted from the oxygen sensor (3) is recorded as a maximum value when executing a rich spike, is recorded.
Abstract:
Oxides of nitrogen are adsorbed onto the surfaces of gas passages (68) in a bed (57, 100) that has relative rotation with respect to a gas inlet distributor (76, 101). The manifold has a baffle (85) or ribs (121, 122) that causes constantly flowing engine exhaust (53) to enter the gas passages over a large portion of a revolution of the adsorption bed or the distributor, and causes constantly flowing regeneration gas (54) to thereafter pass through those passages during a small portion of each revolution. The passages may be formed by planar (66a) or helical (66b) radial walls (66), a serpentine wall (70), a monolith (126), or a honeycomb (127). Either the distributor (101) or the bed (57) may be rotated to distribute the gases.
Abstract:
Exhaust flow from an internal combustion engine is divided in a predetermined ratio between two adsorber catalysts arranged in parallel during lean operation. A regeneration cycle time is predetermined and regeneration is accomplished by injecting hydrocarbons into a catalyst leg having a reduced exhaust flow. Upon regeneration of the catalyst, the exhaust gas flow distribution is reversed and the opposite catalyst is regenerated while the regenerated catalyst bears the brunt of the exhaust flow. The exhaust flow then reverts to a normal (e.g. 50—50) flow distribution until another regeneration cycle is warranted. A catalytic soot filter placed upstream of each adsorber is also regenerated by hydrocarbon injection. The addition of the catalytic soot filter provides more time and surface area for the hydrocarbon to react with the oxygen. Some of the diesel fuel is reformulated into hydrogen and carbon monoxide for superior regeneration.
Abstract:
A method and apparatus controls an internal combustion engine of a vehicle in which an exhaust purifying catalyst capable of storing oxygen is provided in an exhaust system of the engine. The internal combustion engine is adapted to be temporarily stopped when a predetermined condition for stopping the engine is satisfied, and resumes its operation when the predetermined condition is eliminated. The internal combustion engine is operated so as to reduce an amount of oxygen stored in the exhaust purifying catalyst during a temporary stoppage of the engine, before fuel starts being burned for resuming the operation of the engine.
Abstract:
A method and apparatus for controlling the operation of a “lean-burn” internal combustion engine in cooperation with an exhaust gas purification system having an emissions control device capable of alternatively storing and releasing NOx when exposed to exhaust gases that are lean and rich of stoichiometry, respectively, determines a performance impact, such as a fuel-economy benefit, of operating the engine at a selected lean or rich operating condition. The method and apparatus then enable the selected operating condition as long as such enabled operation provides further performance benefits.