Abstract:
An apparatus includes: a processor that executed a procedure, the procedure including: detecting a moving vehicle as the moving vehicle approaches a vehicle queue based on a signal from a sensor, acquiring a position and a speed of the moving vehicle based on the signal, calculating a stop position of the moving vehicle based on a change in the position and the speed of the moving vehicle, and calculating a length of the vehicle queue based on the stop position of the moving vehicle.
Abstract:
The FMCW radar device includes: a range observation period setting section configured to set a plurality of range observation periods; a modulated frequency width setting section configured to set, for the respective plurality of range observation periods, a plurality of modulated frequency widths; a beat signal generation section configured to generate, for the respective plurality of range observation periods, beat signals based on the transmission signal and the reception signal; and a pass bandwidth setting section configured to set pass bandwidths of the beat signals generated by the beat signal generation section, in which the modulated frequency width setting section sets, for the respective plurality of range observation periods, the plurality of modulated frequency widths so that a difference among maximum frequencies of the beat signals generated for the respective plurality of range observation periods becomes zero or falls within a predetermined range.
Abstract:
Various exemplary embodiments relate to a method for detecting an object using radar system having M transmit antennas, N receive antennas, and a processor, including: receiving, by the processor, N×M digital signals, wherein the N receivers receive M received signals corresponding to M sequences of encoded transmitted signals resulting in N×M digital signals; processing the N×M digital signals to produce N×M first range/relative velocity matrices; applying a phase compensation to N×(M−1) first range/relative velocity matrices to compensate for a difference in range between the N×(M−1) first range/relative velocity matrices and the Mth range/velocity matrix; decoding the M phase compensated range/relative velocity matrices for the N receivers using an inverse of the transmit encoding to produce M decoded phase range/relative velocity matrices for the N receivers; detecting objects using the M range/relative velocity matrices for the N receivers to produce a detection vector.
Abstract:
Disclosed is an apparatus for detecting location information of a target, comprising: a controller for setting the number of time slots to which a signal is transmitted, different center frequencies for each of the time slots, and an a bandwidth of the signal to be transmitted to each of the time slots; a transmitter using one transmitting antenna to transmit the set signal to each of the time slots; a receiver using a plurality of receiving antennas to receive a signal reflected from a target for each of the plurality of time slots; and a signal processor using the received signal to extract the location information of the target.
Abstract:
Method in which vehicles are measured repeatedly while traveling through a radar cone, and specific position values are formed so as to be associated with the measurement times. This can be a specific radial distance or a specific object angle. The change over time is analyzed with respect to a section of discontinuity. The length of this section depends upon the length of the vehicle and makes classification possible.
Abstract:
A radar system suitable for an automated vehicle includes a plurality of antennas configured to detect a reflected radar signal reflected by an object in a field-of-view of the system. Each antenna of the plurality of antennas is configured to output detected signals indicative of the reflected radar signal detected by each of the plurality of antennas. The system also includes a controller configured to receive the detected signals from the plurality of antennas, determine if the object is present in the field-of-view based on the detected signals, and determine a phase-difference between symmetrical-frequency-bins for each antenna. The symmetrical-frequency-bins are symmetrically offset from a maximum-amplitude non-coherent-integration detection-frequency-bin (max-NCI-bin). The controller is further configured to determine a classification of the object based on a time-domain-analysis of the phase differences across the plurality of antennas.
Abstract:
A radar apparatus includes an antenna that receives echo signals, each of the echo signals being a radar signal reflected by one or more objects; a Doppler-frequency acquirer that acquires Doppler frequencies at each range bin from the received echo signals; a direction correlation power-value calculator that calculates direction correlation power values for respective combinations of the Doppler frequencies and at least one of a distance to the one or more objects and an arrival direction of the echo signals, each direction correlation power value indicating a strength of a corresponding echo signal; and a normalized direction correlation-value calculator that calculates, for the respective combinations, normalized direction correlation values, each normalized direction correlation value indicating a probability of the arrival direction of the corresponding echo signal.
Abstract:
A radar system includes a controller equipped with memory for storing data. The controller is configured to receive a time-domain signal representative of a reflected signal detected by an antenna, and transform the time-domain signal into a plurality of range datasets. Each range dataset corresponds to one of the plurality of chirps, each range dataset is represented by a series of values assigned to a plurality of range bins, and each of the values includes a sign bit. The controller is also configured to compress the plurality of range datasets by storing in the memory a portion of each of the values assigned to at least one of the plurality of range bins, wherein the portion is defined to exclude a first number of redundant sign bits of each value. The controller may further compress the portion by retaining a second number of bits of the data by excluding some of the least significant bits of each value.
Abstract:
A RADAR apparatus may be used in target detection and/or avoidance. The RADAR apparatus may include a microwave front end configured to transmit and receive RF signals, an analog signal conditioning module coupled with the microwave front end module that conditions RF signals received at the microwave front end module, and a digital signal processing module coupled with the analog signal conditioning module that detects presence and range of one or more targets based on the filtered RF signals.
Abstract:
There is provided a radar apparatus. A predicting unit predicts a current peak signal based on a pervious determined peak signal. An extracting unit extracts a current peak signal corresponding to the predicted peak signal, from among peak signals existing within a predetermined range of the frequency. A filtering unit performs a filtering process on the predicted peak signal and the current peak signal, and output a result of the filtering process as a current determined peak signal. If the target derived based on the current peak signal is a preceding vehicle existing in front of an own vehicle equipped with the radar apparatus, the filtering unit changes whether to perform the filtering process according to a state of the preceding vehicle.