Abstract:
Field emission properties may also be improved by coating the carbon materials with metal oxides. These metal oxides contribute to lowering the work function of the carbon material as well as improve the life of the field emission properties of the carbon materials, especially under high current density operation.
Abstract:
A field emission display (FED) device prevents a phenomenon that a cross talk occurs among neighboring cells by preventing distortion of electron beam and enhances luminance. The FED device includes a gate electrode and an insulation layer sequentially formed on a substrate; a cathode electrode formed on the insulation layer and crossing the gate electrode; a carbon nano tube (CNT) formed on the cathode electrode and having a smaller length than the gate electrode; and an auxiliary electrode formed parallel to the cathode electrode.
Abstract:
An electron emitter 10A has an emitter 12 made of a dielectric material and an upper electrode 14 and a lower electrode 16 for being supplied with a drive voltage Va for emitting electrons. The upper electrode 14 is disposed on an upper surface of the emitter, and the lower electrode 16 is disposed on a lower surface of the emitter 12. The upper electrode 14 has a plurality of through regions 20 through which the emitter 12 is exposed. Each of the through regions 20 of the upper electrode 14 has a peripheral portion 26 having a surface facing the emitter 12 and spaced from the emitter 12.
Abstract:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
Abstract:
The invention relates to flat panel display terminals based on cold emission cathodes.The aim of said invention is to develop a full color processing display terminal using a cold emission cathode having high emission characteristics.The inventive cold emission film cathode comprises an insulated substrate which can be made of glass and a nanocrystalline carbon film emitter placed on it, said emitter is embodied in the form of a mono layer of grains of powder of a high temperature resistive material having a grain size ranging from 10−9 to 10−4 m, said grains being covered with a nanocrystalline carbon film. The inventive flat display terminal comprises flat glass plates on one of which a system of cold emission cathodes is arranged, said cathodes are embodied in a form of busbars coated with the mono layer of grains of powder of high temperature resistive material having a grain size ranging from 10−9 to 10−4 m which are covered with a nanocrystalline carbon film. The powdery grains are made of a material belonging to the family of silicon, diamond, silicon carbide, molybdenum, tungsten, tantalum, titanium and the alloys thereof. The plates are embodied in the form of a sheet glass.At least one grid can be arranged between cathode and the anode.Said invention allows to use a cheap glass and even polymers to produce a cathode assembly of a display terminal, in addition to the use of standard processing for sealing and vacuuming of the display terminal.
Abstract:
A cathode substrate 10 is heated to 400 to 600° C. in the atmosphere of hydrocarbon gas such as methane and the gas is allowed to react with the surface of the cathode substrate 10 by a thermal CVD method. Thus, an electron emission source in which graphite nano-fibers 11 are allowed to grow in a gaseous-phase on the surface of the cathode substrate 10 by using nickel or iron existing on the surface of the cathode substrate 10 as a nucleus is held between upper and lower end hats 12 to form a cathode part 13.
Abstract:
The present invention is directed toward cathodes and cathode materials comprising carbon nanotubes (CNTs) and particles. The present invention is also directed toward field emission devices comprising a cathode of the present invention, as well as methods for making these cathodes. In some embodiments, the cathode of the present invention is used in a field emission display. The invention also comprises a method of depositing a layer of CNTs and particles onto a substrate to form a cathode of the present invention, as well as a method of controlling the density of CNTs used in this mixed layer in an effort to optimize the field emission properties of the resulting layer for field emission display applications.
Abstract:
A field emission cathode and methods for fabricating such a cathode from at least one body containing a first substance. The steps include a preparation of at least one irregularity in an emitting surface of the body, adding to the emitting surface of the body ions of a second substance with a low work function, and modifying the emitting surface by inducing field emission in applying a variable electric field to the body and increasing the field strength in steps.
Abstract:
In the method of the present invention, electrostatic fields are used to induce heat pumping action of a working fluid. A plurality of heat pumps with no moving parts are used. The operation of the one pump enhances the operation of the next. The method of the present invention is conducive to devices of a wide range of scales. Furthermore, operation at partial power levels is practicable, and precise control of temperature possible. Control is further enhanced by the addition or removal of further units to the system. Reliability should be enhanced, and peak power demands reduced. Wide selection of possible working fluids allows for the elimination of environmentally harmful halocarbons. In one embodiment of the present invention, chemical working fluids are eliminated entirely. In another embodiment, supercooled fluids such as liquid helium may be used while eliminating the wastage commonly encountered using such fluids.
Abstract:
This invention relates to a liquid metal ion source which melts a source material and extracts ions. Stable extraction of ions of at least one element selected from among As, P and B for a long period of time can be attained by using as a source material an alloy having a composition represented by the formula L.sub.X R.sub.Y M.sub.A wherein X, Y and A each stands for atomic percentage; L at least one element selected from among Pt, Pd and Ag; R at least one element selected from among As, P and B; M at least one element selected from among Ge, Si and Sb; 5