Abstract:
A transflective LCD device. The device includes a first color filter on a first substrate, and a reflective electrode on the first color filter. The reflective electrode has an opaque portion and a transparent portion. A second color filter is formed on an inner side of a second substrate opposite the first substrate. A common electrode is on the second color filter, and a liquid crystal layer is between the first and the second substrates. Another transflective LCD device is provided, including a first color filter on a first substrate, a reflective layer on part of the first color filter, a second color filter on the reflective layer and the first color filter, a transparent electrode on the second color filter, and a common electrode on an inner side of a second substrate opposite the first substrate.
Abstract:
The present invention includes a method of forming a resist structure comprising depositing a first photoresist material over a first layer. Selectively exposing portions of the first layer to light to provide exposed portions and unexposed portions in the first photoresist layer. Without developing the first photoresist layer, depositing a second photoresist layer over the first photoresist layer including both exposed portions and unexposed portions. The second photoresist layer being capable of crosslinking in the presence of an acid. Treating the first photoresist layer to cause an acid from only one of the exposed portions or unexposed portions of the first photoresist layer producing a plurality of crosslinked portions of the second photoresist layer. Thereafter, developing the second photoresist layer to remove uncrosslinked portions.
Abstract:
A constraint stiffener for reinforcing an integrated circuit package is provided. In one embodiment, the constraint stiffener comprises a rigid, planar base element for bonding to an integrated circuit substrate. The base element has a plurality of elongated support members, and the base element has an opening therein for surrounding an integrated circuit. The base element and support members reduce warpage due to thermal expansion mismatches between at least the integrated circuit and the substrate. In one embodiment, the elongated support members are detachable from the corners of the base element. In another embodiment, the elongated support members have means for attaching and detaching to the corners of the base element. In yet another embodiment, the elongated support members are detachable from about the midsections of the base element. In another embodiment, the elongated support members have means for attaching and detaching to the midsections of the base element.
Abstract:
An apparatus for fabricating a coverlayer of optical information storage media is disclosed. The apparatus comprises a rotating platform, a rotating plate and a UV irradiation system. A substrate is disposed on the rotating platform and a radiation setting resin material is disposed on a surface of the substrate. The rotating plate is moved towards the rotating platform to compress the radiation-setting resin material against the substrate. The resulting structure is rotated by rotating the rotating platform. A thin radiation-setting resin layer with a uniform thickness is formed on the substrate. The radiation-setting resin layer is illuminated by a UV light to harden the radiation-setting resin layer. Next, the rotating plate is separated from the radiation-setting resin layer while the radiation-setting resin layer remains adhered to the substrate. The hardened radiation-setting resin layer serves as a coverlayer of the optical information storage media.
Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of patterns. Each pattern corresponds to a pit or a land on a phase-changed type optical storage medium accessed by the optical storage device. The method further includes performing calculations corresponding to a plurality of data types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data types. Each pattern belongs to a data type. The data-to-clock edge deviations are utilized for tuning the write strategy parameters corresponding to the data types respectively.
Abstract:
A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
Abstract:
A method of processing a semiconductor wafer can be used prior to an immersion lithography process. The method includes providing a layer of organic photoresist onto a surface of the semiconductor wafer and removing a portion of the photoresist from an outer edge of the wafer using an edge-bead removal process. The outer edge of the wafer is then cleaned using one or more processes, including a mechanical scrubber/cleaner, mega-sonic power, de-ionized water and/or chemical solution.
Abstract:
An overlay mark is provided. A first material layer is formed on a substrate, and then a first trench serving as a trench type outer mark is formed in the first material layer. The first trench is partially filled with the first deposition layer. A second material is formed over the first trench and the first deposition layer. A second trench is formed exposing the first deposition layer within the first trench. The second trench is partially filled with a second deposition layer forming a third trench. A third material layer is formed on the substrate to cover the second deposition layer and the second material layer. A step height is formed on the third deposition layer between the edge of the first trench and the center of the first trench. A raised feature serving as an inner mark is formed on the third deposition layer.
Abstract:
An image compression/decompression method is provided for compressing/decompressing image data. First, each pixel of the raw image data is received. Then, each pixel of the raw image data is compared with a default transparent code to recognize whether the pixel in the raw image data is a transparent code pixel. Finally, a single transparent code pixel or one transparent code pixel of a sequence of transparent code pixels is stored, and a total length information of the single transparent code pixel or the sequence of the transparent code pixels is acquired.
Abstract:
A method for optimizing write parameters using two-stage adjustment is provided. A first kind of write strategy parameters optimization procedure for adjusting at least one static write strategy parameter of a write strategy is performed. A second kind of write strategy parameters optimization procedure for adjusting at least one dynamic write strategy parameter of the write strategy is performed after performing the first kind of write strategy parameters optimization procedure. The static write strategy parameter corresponds to a signal length of a pit on an optical disk and the dynamic write strategy parameter is utilized to overcome heat interference when forming the pit.