Abstract:
A method of processing a semiconductor wafer can be used prior to an immersion lithography process. The method includes providing a layer of organic photoresist onto a surface of the semiconductor wafer and removing a portion of the photoresist from an outer edge of the wafer using an edge-bead removal process. The outer edge of the wafer is then cleaned using one or more processes, including a mechanical scrubber/cleaner, mega-sonic power, de-ionized water and/or chemical solution.
Abstract:
A method of creating a resist image on a semiconductor substrate includes exposing a layer of photoresist on the semiconductor substrate and developing the exposed layer of photoresist using a first fluid including supercritical carbon dioxide and a base such as Tetra-Methyl Ammonium Hydroxide (TMAH). Additionally, the developed photoresist can be cleaned using a second fluid including supercritical carbon dioxide and a solvent such as methanol, ethanol, isopropanol, and xylene.
Abstract:
A method for forming a semiconductor device includes forming a photoresist layer over a substrate and patterning the photoresist layer to form photoresist portions. A second layer is formed over the substrate in areas not covered by the photoresist portions and the photoresist portions are removed. After removing the photoresist portions, the second layer is used to modify the substrate to create at least a portion of the semiconductor device.
Abstract:
A method for immersion lithography includes providing a substrate coated with an imaging layer, dispensing a conductive immersion fluid between the substrate and an imaging lens of a lithography system, and performing an exposure process to the imaging layer using a radiation energy through the conductive immersion fluid.
Abstract:
An immersion lithography system includes an immersion fluid holder for containing an immersion fluid. The system further includes a stage for positioning a resist-coated semiconductor wafer in the immersion fluid holder and a lens proximate to the immersion fluid holder and positionable for projecting an image through the immersion fluid and onto the resist-coated semiconductor wafer. The immersion fluid holder includes a coating configured to reduce contaminate adhesion from contaminates in the immersion fluid.
Abstract:
Photosensitive materials and method of forming a pattern that include providing a composition of a component of a photosensitive material that is operable to float to a top region of a layer formed from the photosensitive material. In an example, a photosensitive layer includes a first component having a fluorine atom (e.g., alkyl fluoride group). After forming the photosensitive layer, the first component floats to a top surface of the photosensitive layer. Thereafter, the photosensitive layer is patterned.
Abstract:
A device having an overlay mark over a substrate and a method of adjusting multi-layer overlay alignment using the overlay mark for accuracy are disclosed. The overlay mark includes a first feature in a first layer, having a plurality of first alignment segments substantially parallel to each other extending only along an X direction; a second feature in a second layer over the first layer, having a plurality of second alignment segments substantially parallel to each other extending along a Y direction different from the X direction; and a third feature in a third layer over the second layer, having a plurality of third alignment segments substantially parallel to each other extending along the X direction and a plurality of fourth alignment segments substantially parallel to each other extending along the Y direction.
Abstract:
A method includes forming a photo resist pattern, and performing a light-exposure on a first portion of the photo resist pattern, wherein a second portion of the photo resist pattern is not exposed to light. A photo-acid reactive material is coated on the first portion and the second portion of the photo resist pattern. The photo-acid reactive material reacts with the photo resist pattern to form a film. Portions of the photo-acid reactive material that do not react with the photo resist pattern are then removed, and the film is left on the photo resist pattern.
Abstract:
A lithography method of manufacturing integrated circuits is disclosed. A photoalignment layer is formed on a substrate. A treatment is performed to reorganize and align the photoalignment molecules. A photoresist layer may be formed on the photoalignment layer in a bi-layer separate coating or with the photoalignment layer in a bound-bind structure.
Abstract:
Methods and materials directed to solubility of photosensitive material in negative tone developer are described. The photosensitive material may include greater than 50% acid labile groups as branches to a polymer chain. In another embodiment, a photosensitive material, after exposure or irradiation, is treated. Exemplary treatments include applying a base to the photosensitive material.