Abstract:
A silicon nanowire substrate having a structure in which a silicon nanowire film having a fine line-width is formed on a substrate, a method of manufacturing the same, and a method of manufacturing a thin film transistor using the same. The method of manufacturing the silicon nanowire substrate includes preparing a substrate, forming an insulating film on the substrate, forming a silicon film on the insulating film, patterning the insulating film and the silicon film into a strip shape, reducing the line-width of the insulating film by undercut etching at least one lateral side of the insulating film, and forming a self-aligned silicon nanowire film on an upper surface of the insulating film by melting and crystallizing the silicon film.
Abstract:
Provided is a silicon thin film transistor (TFT) including: a substrate; a silicon channel layer formed on the substrate with a source and a drain on both sides thereof; a gate insulating layer formed on the silicon channel layer; and a gate formed on the gate insulating layer, wherein the gate insulating layer has a structure including an HfOx film. The TFT has a low leakage current.
Abstract:
Provided is a method of manufacturing a single crystal Si film. The method includes: preparing a Si substrate on which a first oxide layer is formed and an insulating substrate on which a second oxide layer is formed; forming a dividing layer at a predetermined depth from a surface of the Si substrate by implanting hydrogen ions from above the first oxide layer; bonding the insulating substrate to the Si substrate so that the first oxide layer contacts the second oxide layer; and forming a single crystal Si film having a predetermined thickness on the insulating substrate by cutting the dividing layer by irradiating a laser beam from above the insulating substrate. Therefore, a single crystal Si film having a predetermined thickness can be formed on an insulating substrate.
Abstract:
A method of manufacturing a thin film transistor is provided. The method includes forming an amorphous silicon layer on a substrate, forming a source region, a drain region, and a region of a plurality of channels electrically interposed between the source region and the drain region by patterning the amorphous silicon layer, annealing a region of the channels, sequentially forming a gate oxide film and a gate electrode on a channel surface, and doping the source region and the drain region.
Abstract:
Provided is a method for manufacturing a MOSFET, including: forming a shallow trench isolation (STI) in a semiconductor substrate to define an active region for the MOSFET; performing etching with the STI as a mask, to expose a surface of the semiconductor substrate, and to protrude a portion of the STI with respect to the surface of the semiconductor substrate, resulting in a protruding portion; forming a first spacer on sidewalls of the protruding portion; forming a gate stack on the semiconductor substrate; forming a second spacer surrounding the gate stack; forming openings in the semiconductor substrate with the STI, the gate stack, the first spacer and the second spacer as a mask; epitaxially growing a semiconductor layer with a bottom surface and sidewalls of each of the openings as a growth seed layer; and performing ion implantation into the semiconductor layer to form source and drain regions.
Abstract:
A MOS transistor with stacked nanowires and a method of manufacturing the same. The transistor may include a stack of cascaded nanowires extending in a first direction on a substrate; a gate stack extending in a second direction across the nanowire stack; source and drain regions disposed on opposite sides of the gate stack in the second direction; and a channel region constituted of the nanowire stack between the source and drain regions. he cascaded nanowires can be formed by repeated operations of etching back, and lateral etching and then filling of grooves, thereby increasing an effective width of the channel, increasing a total area of an effective conductive section, and thus improving a drive current.
Abstract:
The present invention discloses a semiconductor device, comprising: a substrate, a gate stack structure on the substrate, source and drain regions in the substrate on both sides of the gate stack structure, and a channel region between the source and drain regions in the substrate, characterized in that at least one of the source and drain regions comprises a GeSn alloy. In accordance with the semiconductor device and method for manufacturing the same of the present invention, GeSn stressed source and drain regions with high concentration of Sn is formed by implanting precursors and performing a laser rapid annealing, thus the device carrier mobility of the channel region is effectively enhanced and the device drive capability is further improved.
Abstract:
The present invention discloses a method for manufacturing a semiconductor device comprising the steps of: forming a plurality of source and drain regions in a substrate; forming a plurality of gate spacer structures and an interlayer dielectric layer around the gate spacer structures on the substrate, wherein the gate spacer structures enclose a plurality of first gate trenches and a plurality of second gate trenches; sequentially depositing a first gate insulating layer and a second gate insulating layer, a first blocking layer and a second work function regulating layer in the first and second gate trenches; performing selective etching to remove the second work function regulating layer from the first gate trenches to expose the first blocking layer; depositing a first work function regulating layer on the first blocking layer in the first gate trenches and on the second work function regulating layer in the second gate trenches; and depositing a resistance regulating layer on the first work function regulating layer in the first gate trenches and on the first work function regulating layer in the second gate trench.
Abstract:
This invention relates to a MOS device for making the source/drain region closer to the channel region and a method of manufacturing the same, comprising: providing an initial structure, which includes a substrate, an active region, and a gate stack; performing ion implantation in the active region on both sides of the gate stack, such that part of the substrate material undergoes pre-amorphization to form an amorphous material layer; forming a first spacer; with the first spacer as a mask, performing dry etching, thereby forming a recess, with the amorphous material layer below the first spacer kept; performing wet etching using an etchant solution that is isotropic to the amorphous material layer and whose etch rate to the amorphous material layer is greater than or substantially equal to the etch rate to the {100} and {110} surfaces of the substrate material but is far greater than the etch rate to the {111} surface of the substrate material, thus removing the amorphous material layer below the first spacer, such that the substrate material below the amorphous material layer is exposed to the solution and is etched thereby, and in the end, forming a Sigma shaped recess that extends to the nearby region below the gate stack; and epitaxially forming SiGe in the Sigma shaped recess.
Abstract:
The invention discloses an etch-back method for planarization at the position-near-interface of an interlayer dielectric (ILD), comprising: depositing or growing a thick layer of SiO2 by the chemical vapor deposition or oxidation method on a surface of a wafer; spin-coating a layer of SOG and then performing a heat treatment to obtain a relatively uniform stack structure; perform an etch-back on the SOG using a plasma etching, and stopping when approaching the position-near-interface of SiO2; performing a plasma etch-back on the remaining SOG/SiO2 structure at the position-near-interface until achieving a desired thickness. Since a two-step etching at the position-near-interface is employed, an extremely good smooth surface of the ILD is obtained. That is, a planar and tidy surface of the ILD is obtained not only in the center region, but also even at the edge of the wafer.