Abstract:
A spin treatment apparatus according to an embodiment performs a treatment while rotating a substrate and includes: at least three clamp pins configured to contact an outer peripheral surface of the substrate and clamp the substrate; rotatable pin rotators provided for the respective clamp pins and each configured to retain the corresponding clamp pin at a position offset from a rotation axis of the pin rotator parallel with a rotation axis of the substrate; magnet gears provided for the respective pin rotators around outer peripheral surfaces thereof and each having a magnetic-pole part formed spirally about the rotation axis of the pin rotator; rotation magnets provided for the respective magnet gears and positioned to attract and be attracted by the magnetic-pole part of the corresponding magnet gear; and a movement mechanism configured to move the rotation magnets along the rotation axes of the pin rotators.
Abstract:
According to the embodiment, a suction stage includes a mounting section configured to mount a first substrate, and an evacuation section configured to evacuate air between the first substrate and the mounting section. The mounting section includes a first wall part provided on an outer peripheral side of one end surface of the mounting section and shaped like a ring, and a second wall part provided inside the first wall part and shaped like a ring. The evacuation section includes a first control valve provided between the evacuation section and a first region between the first wall part and the second wall part, a second control valve provided between the evacuation section and a second region inside the second wall part, and a control section configured to control the first control valve and the second control valve. The control section is configured to control the first control valve and the second control valve so that suction of the first substrate and deactivation of the suction of the first substrate are alternately performed in at least one of the first region and the second region. While the suction of the first substrate is deactivated in one of the first region and the second region, the suction of the first substrate is performed in the other region.
Abstract:
According to one embodiment, an ultrasonic bonding apparatus includes an ultrasonic transducer, a distal-end tool, an ultrasonic horn and an ultrasonic oscillator. The ultrasonic oscillator includes an oscillation circuit and a control device. The ultrasonic oscillator applies the voltage oscillated by the oscillation circuit to the ultrasonic transducer. The control device is configured to detect a voltage reflection ratio from the voltage and current supplied from the oscillation circuit and to control the frequency of the voltage generated by the oscillation circuit, thereby to minimize the voltage reflection ratio.
Abstract:
According to one embodiment, an ultrasonic bonding apparatus includes an ultrasonic transducer, a distal-end tool, an ultrasonic horn and an ultrasonic oscillator. The ultrasonic oscillator includes an oscillation circuit and a control device. The ultrasonic oscillator applies the voltage oscillated by the oscillation circuit to the ultrasonic transducer. The control device is configured to detect a voltage reflection ratio from the voltage and current supplied from the oscillation circuit and to control the frequency of the voltage generated by the oscillation circuit, thereby to minimize the voltage reflection ratio.
Abstract:
A substrate processing device 10 includes a suction drying unit 65 drying a surface of a substrate W by absorbing and removing a liquid droplet of volatile solvent formed on the surface of the substrate W by a heating operation of a heating unit 64.
Abstract:
According to one embodiment, a bonding apparatus for processing a retained substrate includes a main body unit, a nozzle, a gas supply unit, and a substrate support unit. The nozzle opens on a face of the main body unit on a side that a first substrate is retained. The gas supply unit is configured to supply gas to the nozzle, to apply suction to the first substrate and to separate the substrate from the face of the main body unit. The substrate support unit is configured to support a peripheral edge portion of a second substrate provided in opposition to the first substrate with a predetermined gap.
Abstract:
An illumination system includes a first illumination unit which uses an amount of illumination light in accordance with a set amount of light to illuminate an illuminated object, a second illumination unit which has a response to switching of the set amount of light better than said first illumination unit and which uses illumination light which is superposed on the illumination light from said first illumination unit to illuminate said illuminated object, and an illumination controller which controls the amount of illumination light of said second illumination unit by switching the set amount of light in accordance with the control information while maintaining the amount of illumination light of said first illumination unit at a predetermined amount.
Abstract:
There is disclosed a method comprising bonding two substrates to each other by a sealing agent, obtaining a positional shift amount between the bonded two substrates, and moving at least one of the two substrates by a correction movement amount obtained by multiplying the positional shift amount by a correction coefficient larger than 1 to correct the positional shift amount between these two substrates.
Abstract:
A liquid crystal dropping apparatus is capable of achieving a high-speed liquid crystal dropping operation and of improving the productivity. The liquid crystal dropping apparatus 10 includes a container 40 for containing a liquid crystal L, a liquid crystal dispensing device 20 for dropping the liquid crystal L contained in the container 40 on a substrate 1, and a stage-moving device 12 for moving the substrate 1 relative to the liquid crystal dispensing device 20. The liquid crystal dispensing device 20 includes a sucking means (suction port 21 and such) for taking out from the container 40 a quantity of the liquid crystal L corresponding to a quantity of the liquid crystal L to be dropped, a temporary storage means (storage chambers 22) for temporarily storing the liquid crystal L taken out from the container 40, and a discharge means (discharge port 23 and such) for discharging the temporarily stored liquid crystal L.
Abstract:
At least when an upper glass substrate 3 held by an upper retention head 10 and a lower glass substrate 4 held by a lower retention head 11 are abutted on each other through a sealing material 5, air cylinders 25, 25 apply a lifting force balancing with a dead weight of the upper retention head 10 to the upper retention head 10 to cancel its dead weight. In this state, the upper glass substrate 3 and the lower glass substrate 4 are abutted on each other through the sealing material 5.