Abstract:
Provided is a voltage regulator in which an output current can be controlled stably and accurately to an overcurrent protection set value without the need of providing a phase compensation circuit including an element having a large area. The voltage regulator includes a constant voltage control circuit including: a first differential amplifier circuit for comparing a first reference voltage and a feedback voltage to each other; and an output transistor to be controlled by an output voltage of the first differential amplifier circuit, and an overcurrent protective circuit including: a resistor for measuring the output current; a second differential amplifier circuit for measuring a difference between voltages at both terminals of the resistor; a comparator for comparing an output voltage of the second differential amplifier circuit and a second reference voltage to each other; and a switch to be controlled by a detection signal of the comparator. When the output current equal to or larger than an overcurrent protection set value flows, the output voltage of the second differential amplifier circuit is input to the first differential amplifier circuit via the switch, to thereby switch control of the output transistor from control based on the constant voltage control circuit to control based on the overcurrent protective circuit.
Abstract:
To provide a small non-contact power transmitter capable of securing the power transmission distance even when positional deviation occurs between a power transmission coil and a power receiving coil.
Abstract:
To receive data normally in communication by an optical signal by an electronic device which transmits data even when a transmission frequency differs. An electronic device transmits a transmission-frequency measurement signal for measuring a transmission frequency of data and transmits the data by using a light source which transmits an optical signal. An electronic timepiece specifies the transmission frequency of data based on the transmission-frequency measurement signal received by a solar battery which receives the optical signal and receiving the data by the solar battery based on the specified transmission frequency.
Abstract:
To provide a crystal oscillation circuit low in current consumption and stably short in oscillation start time. A crystal oscillation circuit is equipped with a crystal vibrator, a feedback resistor, a bias circuit, a constant voltage circuit, and an oscillation inverter configured by a constant current inverter. The oscillation inverter is configured so as to be controlled by currents based on input signals from the bias circuit and the crystal vibrator and driven by an output voltage of the constant voltage circuit.
Abstract:
Provided is a semiconductor device including a detection circuit in which, even when a load short-circuit detection circuit and a load open-circuit detection circuit perform false detection due to a fluctuation in power supply voltage and the like, an output of a false detection result can be prevented. The detection circuit includes the load short-circuit detection circuit configured to detect a short circuit of a load, the load open-circuit detection circuit configured to detect an open circuit of the load, and a logic circuit configured to output output signals of the load short-circuit detection circuit and the load open-circuit detection circuit to an output terminal of the logic circuit, in which the logic circuit outputs a signal of a non-detection logic to the output terminal when the outputs of the load open-circuit detection circuit and the load short-circuit detection circuit are detection logics.
Abstract:
A printing unit, comprising: a main body frame; a platen roller removably mounted on the main body frame; a lock mechanism supported on the main body frame so as to be pivotable between a locking position where the platen roller is held on the main body frame in a rotatable manner and an unlocking position where the platen roller is detachable from the main body frame; a thermal head held in press contact with an outer peripheral surface of the platen roller; a pivot shaft provided to one of the main body frame and the lock mechanism and inserted through shaft holes formed in another of the main body frame and the lock mechanism, the pivot shaft being configured to pivot the lock mechanism relative to the main body frame about the pivot shaft; and biasing members configured to bias the lock mechanism toward the locking position and bring the pivot shaft and opening edges of the shaft holes into abutment against each other.
Abstract:
Provided is a magnetic sensor device capable of performing signal processing at high speed with high accuracy. The magnetic sensor device includes: a plurality of Hall elements; a plurality of differential amplifiers to which the plurality of Hall elements are connected, respectively; a detection voltage setting circuit for outputting a reference voltage; and a comparator including: a plurality of differential input pairs connected to the plurality of differential amplifiers, respectively; and a differential input pair connected to the detection voltage setting circuit.
Abstract:
A first object of the present invention is to provide Co-based alloys for biomedical applications which are Ni-free, high intensity and high elastic modulus and are suitable for plastic workability. Moreover, a second object of the present invention is to provide Co-based alloys for biomedical applications having X-ray visibility. Furthermore, a third object of the present invention is to provide a stent using the alloys. The Co-based alloys for biomedical applications according to the present invention is configured by adding alloy elements having biocompatibility and an effect of increasing stacking fault energy of the alloys.
Abstract:
In order to provide a semiconductor device having a high ESD tolerance, a source wiring (32a) is formed on a gate (31) and a source (32) in a region of an NMOS transistor (30). The source wiring (32a) electrically connects the gate (31), the source (32), and a ground terminal. A drain wiring (33a) is formed on a drain (33) in the region of the NMOS transistor (30) . The drain wiring (33a) electrically connects the drain (33) and a pad (20) serving as an external connection electrode. Moreover, in the region of the NMOS transistor (30), the drain wiring (33a) has the same wiring width as the source wiring (32a).
Abstract:
Phosphate-based glass doped with copper ions having infrared blocking filter characteristics is formed into particles and is mixed with a transparent encapsulating resin to encapsulate a semiconductor element. The glass particles have a particle diameter four times or more as large as a wavelength of infrared radiation to be blocked. An optical semiconductor device can be obtained having a stable filter characteristics thereof even if an incident light angle changes and is resistant to moisture.