摘要:
A chip package having asymmetric molding includes a lead frame, a chip, an adhesive layer, bonding wires and a molding compound. The lead frame includes a turbulent plate and a frame body having inner lead portions and outer lead portions. The turbulent plate is bended downwards to form a concave portion. The first end of the turbulent plate is connected to the frame body, and the second end is lower than the inner lead portions. The chip is fixed under the inner lead portions through the adhesive layer. The bonding wires are connected between the chip and the inner lead portions. The molding compound encapsulates the chip, the bonding wires, and the turbulent plate. The ratio between the thickness of the molding compound over and under the concave portion is larger than 1. The thickness of the molding compound under and over the outer lead portions is not equal.
摘要:
A chip package structure includes a chip-placed frame that having an adhesive layer thereon; a chip includes a plurality of pads on an active surface thereon, and is provided on the adhesive layer; a package structure is covered around the four sides of the chip-placed frame, and the height of the package structure is larger than the height of the chips; a plurality of patterned metal traces is electrically connected to the plurality of pads, another end is extended out to cover the surface of the package structure; a patterned protective layer is covered on the patterned metal traces and another end of the patterned metal traces is exposed; a plurality of patterned UBM layer is formed on the extended surface of the patterned metal traces; and a plurality of conductive elements is formed on the patterned UBM layer and is electrically connected to one end of the exposed portion of the patterned metal traces.
摘要:
A die rearrangement package structure is provided, which includes a die that having an active surface and a bottom surface, and a plurality of pads is disposed on the active surface; a package body is provided to cover a die and the active surface being exposed; a polymer material with at least one slit is provided to cover the active surface and the pads is exposed from said slits; one ends of a plurality of metal traces is electrically connected to each pads; a protective layer is provided to cover the active surface of the dies and each metal traces, and the other ends of the metal traces being exposed; a plurality of connecting elements is electrically connected other ends of the metal traces, the characterized in that: the package body is a B-stage material.
摘要:
A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a conductive layer having recesses and a patterned solder resist layer on the conductive layer are provided, wherein the patterned solder resist layer covers the recesses of the conductive layer. A part of the conductive layer uncovered by the patterned solder resist layer is removed so as to form a patterned conductive layer. Chips are bonded onto the patterned conductive layer such that the patterned solder resist layer and the chips are at the same side of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. At least one molding compound is formed and the molding compound and the patterned conductive layer are separated.
摘要:
A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
摘要:
A manufacturing process for a chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. A molding compound is formed to encapsulate the patterned conductive layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
摘要:
A packaging method is disclosed that comprises attaching a plurality of dice, each having a plurality of bonding pads disposed on an active surface, to an adhesive layer on a substrate. A polymer material is formed over at least a portion of both the substrate and the plurality of dice and a molding apparatus is used on the substrate to force the polymer material to substantially fill around the plurality of dice. The molding apparatus is removed to expose a surface of the polymer material and a plurality of cutting streets is formed on an exposed surface of the polymer material. The substrate is removed to expose the active surface of the plurality of dice
摘要:
A chip package includes a patterned conductive layer, a first solder resist layer, a second solder resist layer, a chip, bonding wires and a molding compound. The patterned conductive layer has a first surface and a second surface opposite to each other. The first solder resist layer is disposed on the first surface. The second solder resist layer is disposed on the second surface, wherein a part of the second surface is exposed by the second solder resist layer. The chip is disposed on the first solder resist layer, wherein the first solder resist layer is disposed between the patterned conductive layer and the chip. The bonding wires are electrically connected to the chip and the patterned conductive layer exposed by the second solder resist layer. The molding compound encapsulates the pattern conductive layer, the first solder resist layer, the second solder resist layer, the chip and the bonding wires.
摘要:
A chip package structure includes a substrate, a chip, a first B-stage adhesive, bonding wires, a heat sink and a molding compound. The substrate comprises a first surface, a second surface and a through hole. The chip is arranged on the first surface of the substrate and electrically connected thereto while the through hole of the substrate exposes a portion of the chip. The first B-stage adhesive is arranged between the chip and the first surface of the substrate, and the chip is attached to the substrate through the first B-stage adhesive. The bonding wires are connected between the chip exposed by the through hole and second surface of the substrate. The heat sink is arranged on the first surface of the substrate, covering the chip. The molding compound is arranged on the second surface of the substrate, covering a portion of the substrate and bonding wires.
摘要:
A chip stacked package structure and applications are provided, wherein the chip stacked package structure comprises a substrate, a first chip, a patterned circuit layer and a second chip. The substrate has a first surface and an opposite second surface. The first chip with a first active area and an opposite first rear surface is electrically connected to first surface of substrate by a flip chip bonding process. The patterned circuit layer set on the dielectric layer is electrically connected to the substrate via a bonding wire. The second chip set on the patterned circuit layer has a second active area and a plurality of second pads formed on the second active area, wherein the second bonding pad is electrically connected to the patterned circuit layer.