Abstract:
The present disclosure relates to a semiconductor device, comprising a semiconductor substrate; a trench extending into the semiconductor substrate, wherein the trench is partly filled with an electrically conductive structure insulated from the semiconductor substrate; a polysilicon or amorphous silicon routing structure laterally bridging the trench; and an insulation layer between the trench and the routing structure.
Abstract:
A semiconductor device includes a semiconductor body having first and second opposing sides. Contact trenches extend, from the first and second sides, through a dielectric and into the semiconductor body. The contact trenches include conductive material electrically connected to the semiconductor body via sidewalls. The contact trenches include a first contact trench extending through a first dielectric and into the semiconductor body at the first side, the first contact trench including a first conductive material electrically connected to the semiconductor body adjoining the first contact trench, a second contact trench extending through a second dielectric and into the semiconductor body at the second side, the second contact trench including a second conductive material, a first contact pattern surrounded by the first dielectric at the first side, and a second contact pattern surrounded by the second dielectric at the second side.
Abstract:
An integrated circuit having field effect transistors and manufacturing method. One embodiment provides an integrated circuit including a first FET and a second FET. At least one of source, drain, gate of the first FET is electrically connected to the corresponding one of source, drain, gate of the second FET. At least one further of source, drain, gate of the first FET and the corresponding one further of source, drain, gate of the second FET are connected to a circuit element, respectively. A dopant concentration of a body along a channel of each of the first and second FETs has a peak at a peak location within the channel.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.
Abstract:
A method for production of doped semiconductor regions in a semiconductor body of a lateral trench transistor includes forming a trench in the semiconductor body and introducing dopants into at least one area of the semiconductor body that is adjacent to the trench, by carrying out a process in which dopants enter the at least one area through inner walls of the trench.
Abstract:
An integrated circuit having field effect transistors and manufacturing method. One embodiment provides an integrated circuit including a first FET and a second FET. At least one of source, drain, gate of the first FET is electrically connected to the corresponding one of source, drain, gate of the second FET. At least one further of source, drain, gate of the first FET and the corresponding one further of source, drain, gate of the second FET are connected to a circuit element, respectively. A dopant concentration of a body along a channel of each of the first and second FETs has a peak at a peak location within the channel.