Abstract:
Embodiments of the present invention provide a motor vehicle control system for selecting and/or determining a driving surface and for controlling a plurality of vehicle subsystems to operate in a plurality of subsystem control modes in dependence on the selected/determined driving surface, the system being operable in a manual control mode selection condition in which a user is able to select said driving surface and an automatic control mode selection condition in which the system is configured to select said driving surface automatically, wherein the vehicle control system is provided with a memory arranged to memorize a last selected control mode that was selected prior to vehicle de-activation or key-off when operating in the automatic control mode selection condition, and upon the next subsequent vehicle activation or key-on, the system is configured to continue operating in the memorized control mode and to automatically obtain new data in respect of a driving surface over which the vehicle is moving before allowing a change in control mode to take place.
Abstract:
Embodiments of the present invention provide a control system for a motor vehicle, the system being operable in a manual operating mode selection condition in which a user may select a required system operating mode by means of user-operable mode selection input means, and an automatic mode selection condition in which the system is configured to select automatically an appropriate system operating mode, wherein when operating in the manual condition and a change from the manual condition to the automatic condition is made the system is configured to select a prescribed automatic mode selection condition vehicle ride-height independently of the selected operating mode.
Abstract:
A system for controlling vehicle speed in accordance with a current value of vehicle set-speed. The system responds to user input to change the current value of vehicle set-speed to a different value and is configured to store the current value of set-speed in a memory as a stored set-speed and to change the current value of set-speed in dependence on the user input. The speedometer indicates both the current and stored set-speeds. The system can return the current value of vehicle set-speed to the stored set-speed upon receipt of a “resume” or other user command. The system can enter into a descent control mode that applies braking torque but no drive torque and can also enter into a full functionality mode that provides either drive or braking torque to maintain the vehicle at the set-speed.
Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises detecting an occurrence of a slip event, of a step encounter event, or of both events at a leading wheel of the vehicle. The method also comprises predicting that the occurrence of the detected event(s) will occur at a following wheel of the vehicle. The method yet further comprises automatically controlling vehicle speed, vehicle acceleration, or both vehicle speed and acceleration in response to the detection, the prediction, or both the detection and prediction. A speed control system comprising an electronic control unit (ECU) configured to perform the above-described methodology is also provided.
Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises detecting an external force acting on the vehicle wherein the external force has an accelerating or decelerating effect on the vehicle. The method further comprises automatically adjusting a rate of change of at least one component of a net torque being applied to one or more wheels of the vehicle to compensate for the accelerating or decelerating effect of the external force on the vehicle. A system for controlling the speed of a vehicle comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
Embodiments of the present invention provide a control system for a motor vehicle, the system being operable in an automatic mode selection condition in which the system is configured to select automatically an appropriate system operating mode whereby the system assumes operation in said system operating mode, the system being further configured to allow activation of an automatic progress control function in which a speed of the vehicle over terrain is controlled automatically by the system, wherein when the automatic progress control function is active the system is configured automatically to suspend changes in the selected system operating mode.
Abstract:
A method for selecting a gear ratio for a driveline of vehicle is provided. The method comprises gathering information relating to one or more parameters associated with the vehicle and anticipating, based on the gathered information, an occurrence of an event relating to the vehicle for which a change in driveline gear ratio is needed. The method further comprises identifying a suitable driveline gear ratio for the anticipated event, generating a command signal representative of a request to change the gear ratio of the driveline to the identified gear ratio, and communicating the command signal to a driveline subsystem of the vehicle. A system comprising an electronic control unit configured to perform the method is also provided.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising: means for receiving a user input of a target speed at which the vehicle is intended to travel; and means for commanding application of torque to one or more wheels of the vehicle, wherein the system is configured such that when it is required to accelerate the vehicle to achieve the target speed and the system detects a wheel slip event, the system is operable temporarily to suspend an increase in net torque applied to one or more wheels.
Abstract:
Embodiments of the present invention provide a motor vehicle control system for selecting a driving surface and for controlling a plurality of vehicle subsystems to operate in a plurality of subsystem configuration modes in dependence on the selected driving surface, the system being operable in a manual operating mode in which a user is able to select said driving surface and an automatic operating mode in which the system is operable to select said driving surface automatically; wherein the system is able to be switched between said manual and automatic operating modes by means of a user-operable input device; and wherein when operating in the automatic operating mode and a change from the automatic operating mode to the manual operating mode is made via the user-operable device, the system is configured to select a default subsystem configuration mode.
Abstract:
A speed control system operable to control a motor vehicle to operate in accordance with a set-speed value, the control means being operable to allow a user to adjust the set-speed value by user actuation of a vehicle brake control or a vehicle accelerator control.