Abstract:
Systems, circuits, devices and/or methods related to systems and methods for data processing, and more particularly to systems and methods for quality based scheduling processing of data sets.
Abstract:
Various embodiments of the present invention provide systems and methods for encoding and decoding data for constrained systems with state-split based encoders and decoders.
Abstract:
An apparatus comprises read channel circuitry and associated signal processing circuitry comprising frontend processing circuitry and backend processing circuitry. The frontend processing circuitry comprises a loop detector and equalizer configured to determine an equalized read channel signal from a read channel signal and a decoding module configured to apply verification and scrambling processing on a decoded read channel signal. The backend processing circuitry comprises a backend detector, an interleaver, a backend decoder, and a de-interleaver configured to perform an iterative decoding process on the equalized read channel signal to determine the decoded read channel signal. The frontend processing circuitry is controlled by a first clock having an associated first clock rate and the backend processing circuitry is controlled by a selected one of the first clock and a second clock having an associated second clock rate determined at least in part by the first clock rate and a maximum clock rate.
Abstract:
A data processing system is disclosed including a data decoder circuit, an error handling circuit and a syndrome checker circuit. The data decoder circuit is operable to apply a data decode algorithm to a decoder input to yield a decoded output, and to calculate a syndrome indicating an error level for the decoded output. The error handling circuit is operable to determine whether any errors in the decoded output involve user data bits. The syndrome checker circuit is operable to trigger the error handling circuit based at least in part on the syndrome.
Abstract:
Various embodiments of the present invention provide systems and methods for equalization. As an example, a circuit for data equalization is described that includes a 2N state detector circuit that provides a series of detected bits based upon a conditioned input, and a noise predictive filter having a plurality of taps and operable to provide at least a portion of the conditioned input. At least a first of the plurality of taps uses a first subset of the series of detected bits, and a second of the plurality of taps uses a second subset of the series of detected bits. The first subset of the detected bits includes one more bit than the second subset of the detected bits.
Abstract:
Systems and method relating generally to data processing, and more particularly to systems and methods for combining recovered portions of a data set. In one particular case, a system is disclosed that includes a stitching circuit and a data recovery circuit. The stitching circuit is operable to: receive a data set including at least a first fragment and a second fragment; replicate data from at least one of the first fragment and the second fragment as stitching values; and aggregate the first fragment with the second fragment with the stitching values between the first fragment and the second fragment to yield a combined data set. The data recovery circuit is operable to process the combined data set to yield an original data set.
Abstract:
Systems and method relating generally to data processing, and more particularly to systems and methods for modifying symbols in a data set prior to re-processing.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for scheduling in a data decoder.
Abstract:
Systems, circuits, devices and/or methods related to systems and methods for data processing, and more particularly to systems and methods for quality based scheduling processing of data sets. In some cases, a priority indication associated with a data set is modified based upon one or more factors. As an example, the priority indication may be modified based upon a number of times that a given data set processed through both a data detector circuit and a data decoder circuit.
Abstract:
A communication channel structure and a decoding method supported by such a communication channel structure are disclosed. Such a communication channel includes a digital filter configured for filtering an input signal and two quantizer configured for quantizing the filtered signal. A first quantizer is utilized to quantize the filtered signal to produce a first quantized sample having a first precision and a second quantizer is utilized to quantize the filtered signal to produce a second quantized sample having a second precision, wherein the second precision is different from the first precision. The communication channel also includes an iterative decoder configured for utilizing the first quantized sample for a first global iteration of a decoding process and utilizing the second quantized sample for at least one subsequent global iteration of the decoding process.