Abstract:
A rotary combustor, and electricity generator including a stationary structure and at least one tubular annular rotor able to rotate about a shaft by means of contactless suspension devices, and in which is defined an annular combustion chamber having a directed lateral efflux opening for the ejection of gases produced in the combustion. The rotor has a narrow circular slit through which there extend, at predetermined angular intervals, into the combustion chamber, stationary injectors of fuel and oxidizer, and associated igniters, also stationary. A control unit controls the injectors and the associated igniters in a sequential cyclical manner, with predetermined time lags, in such a way as to generate and then sustain a detonation wave which propagates essentially continuously through the chamber, and bring about a rotation at controlled velocity of the rotor due to the action of the gases emitted through the lateral effusion opening.
Abstract:
The electricity generator comprises a microcombustor provided with a fuel injector and acting to produce at an exhaust outlet a flow of exhaust gas in plasma state comprising positive ions and electrons separated from one another, and a conversion device coupled to the outlet of the microcombustor. The conversion device comprises an electrically insulating duct coupled to the said outlet of the microcombustor and provided in its initial portion with separation and capture electrodes for capturing the negative charges (electrons) of the plasma in such a way that downstream the plasma comprises only positive ions. After the initial portion the duct has an intermediate portion provided with an outer cladding of conductive material insulated from the plasma, the ends of which are connectable to a load. In operation the flow of positive ions in the intermediate portion of the duct electrostatically induces in the conductive cladding a negative charge which propagates in the cladding along the direction of flow of the plasma in the intermediate portion of the duct thereby generating a flow of electric current in the load.
Abstract:
The invention describes a system with a multifunctional integrated visual sensor using a CMOS or CCD technology matrix having a sensitive area divided into sub-areas dedicated to a series of specific functions.
Abstract:
An illumination arrangement for a vehicle headlight is formed of a plurality of contiguous elementary cells, each including a light source, defined by an emission surface having a horizontal dimension and a vertical dimension and capable of emitting a luminous flux, and an optical system capable of conveying the luminous flux at a predetermined solid angle about a predetermined direction. The elementary cells are disposed so as to generate overall a predetermined distribution of light emission. The horizontal dimension and the vertical dimension of the emission surface of the light sources are different. The vertical dimension is less than 1 mm and the ratio between the horizontal dimension and the vertical dimension is greater than 2.
Abstract:
A lighting device, comprising a luminous source consisting of a LED (5) that is placed between the flanges (2,3) of a primary reflector (1), which is essentially V-shaped. A secondary reflector (7), composed of an elongated element with steps (8), runs along the extension of one of the flanges (3) of the primary reflector (1), while an elongated transparent diffuser (9) runs along the extension of the other flange (2).
Abstract:
A controlled-luminance lighting device comprising a fluorescent light source of a linear type (5), which extends longitudinally between a reflector (1) that is formed by an elongated body having a curved surface, and a set of transverse fins (3), which are set at a distance apart from one another and which define a grill for directional control of the light emitted by the light source (5). The reflector (1) defines, together with the transverse fins (3), a plurality of elements (2) set alongside one another of a generally parabolic shape.
Abstract:
A system for the production of electrical energy, comprising: a combustion chamber (14) made of material that is able to withstand high temperatures, an injection device (16) connected to said combustion chamber (14) by means of an injection conduit (15), means (17) for supplying combustion support substance into the combustion chamber (14) and means (18) for the removal of gaseous combustion products, means (26) for the selective emission of radiation onto the outer surface of the combustion chamber (14). The combustion chamber (14) is enclosed in a conversion chamber (20) within which are maintained sub-atmospheric pressure conditions, so that a substantial part of the heat developed by the combustion reaction is converted into electromagnetic radiation.
Abstract:
In a process to make an emitter (10) for light sources, which can be led to incandescence through the passage of electric current, a layer made of anodized porous alumina (1) is used as sacrificial element for the structuring of at least a part of the emitter (10).
Abstract:
A light-emitting device comprises a structure defining an orderly and periodic series of cavities of nanometric dimensions, in which a process of catalytic combustion is confined. The dimensions and/or the distance between the micro-cavities are selected to obtain a light emission in the visible and prevent and/or attenuate at the same time emission of infrared radiation.
Abstract:
A light-emitting device, in particular a backlight device, comprises a transparent substrate (2) having a front surface and a rear surface, in which associated to the rear surface are means for generating an electromagnetic radiation that is able to pass through the substrate and come out of the front surface. According to the invention, the device comprises a layer of porous alumina which operates so as to inhibit propagation of said electromagnetic radiation in the directions parallel to the plane of the substrate, thus improving the efficiency of extraction of light from the substrate and increasing the directionality of the emitted light.