摘要:
Embodiments of the present disclosure describe techniques and configurations to impart strain to integrated circuit devices such as horizontal field effect transistors. An integrated circuit device includes a semiconductor substrate, a quantum well channel coupled with the semiconductor substrate, a source structure coupled with the quantum well channel, a drain structure coupled with the quantum well channel and a strain-inducing film disposed on and in direct contact with material of the source structure and the drain structure to reduce resistance of the quantum well channel by imparting a tensile or compressive strain on the quantum well channel, wherein the quantum well channel is disposed between the strain-inducing film and the semiconductor substrate. Other embodiments may be described and/or claimed.
摘要:
A quantum well device and a method for manufacturing the same are disclosed. In an embodiment, a quantum well structure comprises a quantum well region overlying a substrate and a remote counter doping comprising dopants of conductivity opposite to the conductivity of the charge carriers of the quantum well region. The remote counter doping is incorporated in a vicinity of the quantum well region for exchange mobile carriers with the quantum well channel, reducing the off-state leakage current. In another embodiment, a quantum well device comprises a quantum well structure including a remote counter doping, a gate region overlying a portion of the quantum well structure, and a source and drain region adjacent to the gate region. The quantum well device can also comprise a remote delta doping comprising dopants of the same conductivity as the quantum well channel.
摘要:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
摘要:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
摘要:
Embodiments of an apparatus and methods for forming enhanced contacts using sandwiched metal structures are generally described herein. Other embodiments may be described and claimed.
摘要:
Embodiments of an apparatus and methods for forming enhanced contacts using sandwiched metal structures are generally described herein. Other embodiments may be described and claimed.
摘要:
Embodiments include epitaxial semiconductor stacks for reduced defect densities in III-N device layers grown over non-III-N substrates, such as silicon substrates. In embodiments, a metamorphic buffer includes an AlxIn1-xN layer lattice matched to an overlying GaN device layers to reduce thermal mismatch induced defects. Such crystalline epitaxial semiconductor stacks may be device layers for HEMT or LED fabrication, for example. System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits may be provided on the semiconductor stacks in a first area of the silicon substrate while silicon-based CMOS circuitry is provided in a second area of the substrate.
摘要翻译:实施例包括用于在诸如硅衬底的非III-N衬底上生长的III-N器件层中的缺陷密度降低的外延半导体堆叠。 在实施例中,变质缓冲器包括与上覆GaN器件层匹配的Al x In 1-x N层晶格以减少热失配引起的缺陷。 这种结晶外延半导体叠层可以是用于例如HEMT或LED制造的器件层。 使用基于能够实现高Ft的III族氮化物(III-N)的晶体管技术并且还具有足够高的击穿电压(BV)来实现高电压和/或高电平的片上系统(SoC)解决方案集成RFIC与PMIC 电源电路可以设置在硅衬底的第一区域中的半导体堆叠上,而硅基CMOS电路设置在衬底的第二区域中。
摘要:
III-N semiconductor-on-silicon integrated circuit structures and techniques are disclosed. In some cases, the structure includes a first semiconductor layer formed on a nucleation layer, the first semiconductor layer including a 3-D GaN layer on the nucleation layer and having a plurality of 3-D semiconductor structures, and a 2-D GaN layer on the 3-D GaN layer. The structure also may include a second semiconductor layer formed on or within the first semiconductor layer, wherein the second semiconductor layer includes AlGaN on the 2-D GaN layer and a GaN layer on the AlGaN layer. Another structure includes a first semiconductor layer formed on a nucleation layer, the first semiconductor layer comprising a 2-D GaN layer on the nucleation layer, and a second semiconductor layer formed on or within the first semiconductor layer, wherein the second semiconductor layer includes AlGaN on the 2-D GaN layer and a GaN layer on the AlGaN layer.
摘要:
A method to reduce contact resistance of n-channel transistors by using a III-V semiconductor interlayer in source and drain is generally presented. In this regard, a device is introduced comprising an n-type transistor with a source region and a drain region a first interlayer dielectric layer adjacent the transistor, a trench through the first interlayer dielectric layer to the source region, and a conductive source contact in the trench, the source contact being separated from the source region by a III-V semiconductor interlayer. Other embodiments are also disclosed and claimed.
摘要:
A die includes a semiconductive prominence and a surface-doped structure on the prominence. The surface-doped structure makes contact with contact metallization. The prominence may be a source- or drain contact for a transistor. Processes of making the surface-doped structure include wet-vapor- and implantation techniques, and include annealing techniques to drive in the surface doping to only near-surface depths in the semiconductive prominence.