Abstract:
A memory device comprises a first memory area including a first memory cell array having a plurality of first memory cells each for storing N-bit data, where N is a natural number, and a first peripheral circuit for controlling the first memory cells according to an N-bit data access scheme and disposed below the first memory cell array, a second memory area including a second memory cell array having a plurality of second memory cells each for storing M-bit data, where M is a natural number greater than N, and a second peripheral circuit for controlling the second memory cells according to an M-bit data access scheme and disposed below the second memory cell array, wherein the first memory area and the second memory area are included in a single semiconductor chip and share an input and output interface, and a controller configured to generate calculation data by applying a weight stored in the first memory area to sensing data in response to receiving the sensing data obtained by an external sensor, and store the calculation data in one of the first memory area or the second memory area according to the weight, wherein the plurality of first memory cells and the plurality of second memory cells are included in a first chip having a first metal pad, the first peripheral circuit and the second peripheral circuit are included in a second chip having a second metal pad, and the first chip and the second chip are vertically connected to each other by the first metal pad and the second metal pad.
Abstract:
A three-dimensional semiconductor memory device, including a peripheral circuit structure including a first metal pad and a cell array structure disposed on the peripheral circuit structure and including a second metal pad. The peripheral circuit structure may include a first substrate including a first peripheral circuit region and a second peripheral circuit region, first contact plugs, second contact plugs, and a first passive device on and electrically connected to the second contact plugs. The cell array structure may include a second substrate disposed on the peripheral circuit structure, the second substrate including a cell array region and a contact region. The cell array structure may further include gate electrodes and cell contact plugs. The first passive device is vertically between the gate electrodes and the second contact plugs and includes a first contact line. The first metal pad and the second metal pad may be connected by bonding manner.
Abstract:
A memory device including: a memory area having a first memory block and a second memory block; and a control logic configured to control the first memory block and the second memory block in a first mode and a second mode, wherein in the first mode only a control operation for the first memory block is executable, and in the second mode control operations for the first memory block and the second memory block are executable, wherein the control logic counts the number of accesses made to the second memory block in the first mode, and stores the number of accesses as scan data in the second memory block.
Abstract:
An integrated circuit device includes a memory including a memory cell insulation surrounding a memory stack and a memory cell interconnection unit, a peripheral circuit including a peripheral circuit region formed on a peripheral circuit board, and a peripheral circuit interconnection between the peripheral circuit region and the memory structure, a plurality of conductive bonding structures on a boundary between the memory cell interconnection and the peripheral circuit interconnection in a first region, the first region overlapping the memory stack in a vertical direction, and a through electrode penetrating one of the memory cell insulation and the peripheral circuit board and extended to a lower conductive pattern included in the peripheral circuit interconnection in a second region, the second region overlapping the memory cell insulation in the vertical direction.
Abstract:
A memory device comprises a first memory area including a first memory cell array having a plurality of first memory cells each for storing N-bit data, where N is a natural number, and a first peripheral circuit for controlling the first memory cells according to an N-bit data access scheme and disposed below the first memory cell array, a second memory area including a second memory cell array having a plurality of second memory cells each for storing M-bit data, where M is a natural number greater than N, and a second peripheral circuit for controlling the second memory cells according to an M-bit data access scheme and disposed below the second memory cell array, wherein the first memory area and the second memory area are included in a single semiconductor chip and share an input and output interface, and a controller configured to generate calculation data by applying a weight stored in the first memory area to sensing data in response to receiving the sensing data obtained by an external sensor, and store the calculation data in one of the first memory area or the second memory area according to the weight, wherein the plurality of first memory cells and the plurality of second memory cells are included in a first chip having a first metal pad, the first peripheral circuit and the second peripheral circuit are included in a second chip having a second metal pad, and the first chip and the second chip are vertically connected to each other by the first metal pad and the second metal pad.
Abstract:
A flash memory device includes: first pads; second pads; third pads; a memory cell region including first metal pads and a memory cell array; and a peripheral circuit region including a second metal pads and vertically connected to the memory cell region by the first metal pads and the second metal pads directly. The peripheral circuit region includes a row decoder block; a buffer block storing a command and an address received from an external semiconductor chip through the first pads; a page buffer block connected to the memory cell array through bit lines, connected to the third pads through data lines, and exchanging data signals with the external semiconductor chip through the data lines and the third pads; and a control logic block receiving control signals from the external semiconductor chip through the second pads, and controlling the row decoder block and the page buffer block.
Abstract:
A memory device includes a peripheral circuit region comprising a first substrate, a plurality of metal layers over the first substrate, and a first metal pad, a cell region comprising a second substrate, a plurality of gate lines over the second substrate, a plurality of upper interconnection layers in the second substrate, and a second metal pad, wherein the cell region is vertically connected to the peripheral circuit region by the first metal pad and the second metal pad, a common source line between the second substrate and the plurality of gate lines, the common source line comprising a through hole, and a word line cut region extending across the plurality of gate lines and extending through the through hole of the common source line to be connected to a first upper interconnection layer from among the plurality of upper interconnection layers.
Abstract:
An method of operating a nonvolatile memory device including a plurality of memory cells comprises receiving a read command from an external device, in response to the read command, performing, based on a reference voltage, a first cell counting operation with respect to the plurality of memory cells, adjusting at least one read voltage of first through nth read voltages (where n is a natural number greater than 1) based on a first result of the first cell counting operation, and performing, based on the adjusted at least one read voltage, a read operation corresponding to the read command with respect to the plurality of memory cells.
Abstract:
Disclosed is a driver circuit. The driver circuit includes a clamp transistor, a comparison voltage transistor, an amplification transistor, a bias transistor, and a charge circuit. The comparison voltage is configured to provide a comparison voltage. The amplification transistor includes an amplification gate connected to a first node of the clamp transistor, a first amplification node configured to receive the comparison voltage, and a second amplification node connected to a gate of the clamp transistor. The bias transistor is configured to supply a bias voltage. The charge circuit is at least one of configured to drain a current from the first node through the clamp transistor and configured to supply a current to the first node through the clamp transistor.
Abstract:
An operating method of a memory system which includes a nonvolatile memory device including memory cells connected to a plurality of word lines, the operating method including pre-charging a selected one of the plurality of word lines; detecting a variation in a voltage or a current on the selected word line after the selected word line is floated; generating runtime failure information according to the detected variation; and determining a state of the selected word line or a state of a memory block including the selected word line, based on the runtime failure information.