Abstract:
A variety of methods and arrangements for detecting misfire and other engine-related errors are described. In one aspect, a window is assigned to a target firing opportunity for a target working chamber. There is an attempt to fire a target working chamber during the target firing opportunity. A change in an engine parameter (e.g., crankshaft angular acceleration) is measured during the window. A model (e.g., a pressure model) is used to help determine an expected change in the engine parameter during the target firing opportunity. Based on a comparison of the expected change and the measured change in the engine parameter, a determination is made as to whether an engine error (e.g., misfire) has occurred.
Abstract:
Methods and arrangements are described for controlling transitions between firing fractions during skip fire operation of an engine in order to help smooth the transitions. Generally, firing fractions transitions are implemented gradually, preferably in a manner that relatively closely tracks manifold filling dynamics. In some embodiments, the commanded firing fraction is altered each firing opportunity. Another approach contemplates altering the commanded firing fraction by substantially the same amount each firing opportunity for at least a portion of the transition. These approaches work particularly well when the commanded firing fraction is provided to a skip fire controller that includes an accumulator functionality that tracks the portion of a firing that has been requested, but not delivered, or vice versa. In various embodiments, commanded firing fraction changes are delayed relative to initiation of the change in throttle position to help compensate for inherent delays associated with changing the manifold air pressure.
Abstract:
In one aspect, a method for controlling operation of an internal combustion engine is described. The engine is operated in a skip fire manner such that selected skipped working cycles are skipped and selected active working cycles are fired to deliver a desired engine output. A particular level of torque output is selected for each of the fired working chambers. Various methods, arrangements and systems related to the above method are also described.
Abstract:
Various methods and arrangements for determining a combustion control parameter for a working chamber in an engine are described. In one aspect, an engine controller includes a firing counter that stores a firing history for the working chamber. A combustion control module is used to determine a combustion control parameter, which is used to help manage combustion in the working chamber. The combustion control parameter is determined based at least in part on the firing history.
Abstract:
A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.
Abstract:
Various methods and data structures for managing transition between different firing fractions during skip fire operation of an engine are described. In some embodiments, transitions are constrained to occur when firing sequence segments of a designated length are shared by the first and second firing fractions. In a separate aspect, a data structure that uses current firing fraction phase as a first index and a target firing fraction as a second index may be used to determine a phase of the target firing fraction to enter at a transition. Is some circumstances transitions between a current and target firing fraction may be conducted as a series of steps through intermediate firing fractions.
Abstract:
In various described embodiments skip fire control is used to deliver a desired engine output. A controller determines a skip fire firing fraction and (as appropriate) associated engine settings that are suitable for delivering a requested output. In one aspect, the firing fraction is selected from a set of available firing fractions, with the set of available firing fractions varying as a function of engine speed such that more firing fractions are available at higher engine speeds than at lower engine speeds. The controller then direct firings in a skip fire manner that delivers the selected fraction of firings.
Abstract:
A variety of methods and arrangements for managing transitions between operating states for an engine are described. In one aspect, an engine is operated in a particular operating state. A transition is made to another operating state. During that transition, the engine is operated in a skip fire manner.
Abstract:
A variety of methods and devices for mitigating power train vibration during skip fire operation of an engine are described. In one aspect, the slip of a drive train component (such as a torque converter clutch) is based at least in part upon a skip fire characteristic (such as firing fraction, selected firing sequence/pattern, etc.) during skip fire operation of an engine. The modulation of the drive train component slip can also be varied as a function of one or more engine operating parameters such as engine speed and/or a parameter indicative of the output of fired cylinders (such as mass air charge).
Abstract:
A variety of methods and arrangements for operating an internal combustion engine and one or more motor/generators in a hybrid vehicle are described. In various embodiments, the engine is operated in a skip fire mode. Depending on the state of charge of an energy storage device and/or other factors, the engine is operated to generate more or less than a desired level of torque. The one or more motor/generators are used to add or subtract torque so that the motor/generator(s) and the engine collectively deliver the desired level of torque. In some embodiments, the engine may be run with a substantially open throttle to reduce pumping losses and improve fuel efficiency.