Abstract:
A process for producing an interface unit and also a group of such interface units are specified. The interface unit exhibits a first reference surface for beaming in radiation, a second reference surface for emitting the radiation, and an axis extending in the direction from the first to the second reference surface. The production process comprises the steps of setting an optical path length of the interface unit between the first and second reference surfaces along the axis and the fixing of the set optical path length of the interface unit. The optical path length of the interface unit is set in such a way that radiation of a defined numerical aperture beamed in at the first reference surface exhibits a focus location that is predetermined with respect to the second reference surface in the direction of the axis. A precise and uniform focus location with respect to the second reference surface is obtained.
Abstract:
The present invention relates to a method for electrically contacting terminal faces of two substrates (6, 7), in particular of a chip (6) and of a carrier substrate (7). Furthermore, the invention relates to a device for performing a second phase of the method according to the invention. The method according to the invention takes place in two successive phases, wherein, in a first phase, the chip (6) is positioned with its terminal faces against terminal faces of the substrate (7) and laser energy (5) is applied to the chip (6) at the rear and, in a subsequent second phase, in a housing (3), a flux medium is applied and at the same time a reflow is performed by means of laser energy (5) being applied to the chip (6) at the rear, and a process of rinsing the housing interior is subsequently performed. The device according to the invention for performing a second phase of the method comprises a carrier table (1) and a housing (3), which together with a top side of the carrier table (1) forms a housing interior, in which the component arrangement is positioned, and also a laser light source (5), which is oriented in such a way that the laser radiation impinges on the first substrate (6) on the rear side.
Abstract:
A welding method, e.g., a laser welding method, for connecting a first workpiece to a second workpiece, includes a first method step in which the first and the second workpiece are brought into contact with each other; a second method step in which a desired welding distortion is ascertained; and a third method step in which the first and the second workpiece are welded to each other as a function of the welding distortion, and/or in which the first and the second workpiece are rotated about an axis of rotation at a rotational speed, the first and the second workpiece being welded to each other as a function of the rotational speed.
Abstract:
In the field of photolithography systems designed to produce electronic components using the technique known as “lift-off” on a plane substrate comprising one or more plane photosensitive layers, a system uses a laser direct-write technique. It comprises optical or mechanical means configured such that the useful part of the optical beam is inclined on the plane of the photosensitive layers in order to create profiles with an inverted slope within said layers, the useful part of the optical beam being the part of the optical beam which effectively contributes to creating said profiles. In one preferred embodiment, the system comprises means for partial shuttering of the optical beam situated in the neighborhood of the focusing optics.
Abstract:
A method for manufacturing a thin-film solar cell includes providing a first conducting layer on a substrate that has an area at least 0.75 m2. The first conducting layer is located in a deposition portion of the area. An ultraviolet laser beam is applied through a lens to the first conducting layer. Portions of the first conducting layer are scribed form a trench through the layer. The lens focuses the beam and has a focal length at least 100 mm. The focused beam includes an effective portion effective for the scribing and an ineffective portion ineffective for the scribing. The substrate sags and the first conducting layer remains in the effective portion of the focused beam across the area during the step of applying. One or more active layers are provided on the first conducting layer. A second conducting layer is provided on the one or more active layers.
Abstract:
A welding device has a beam source to generate electromagnetic beams for absorption in an object to be welded at a welding location, and at least one sensor situated to detect electromagnetic process beams generated during welding at the welding location. The sensor is to generate a sensor signal as a function of the detected process beams. The welding device also has a processing unit, which is connected to the sensor and the beam source, the processing unit being configured to control at least one parameter of the beam generation of the beam source as a function of the sensor signal. The welding device is to delimit by a window a beam bundle of the emitted process beams in a plane transverse to the beam propagation direction; in the plane, the window has a longitudinal dimension greater than a transversal dimension of the window perpendicular to the longitudinal dimension.
Abstract:
An optical transmitting unit transmits a pulsed laser beam oscillated by a pulsed laser beam oscillator to a focusing unit in a laser processing apparatus. A wavelength band expanding unit expands the wavelength band of the pulsed laser beam, and a pulse width expanding unit increases the pulse width of the expanded pulsed laser beam. A focusing lens focuses the expanded pulsed laser beam. An optical fiber transmits the focused pulsed laser beam through a collimating lens and a pulse width compressing unit compresses the pulse width of the collimated pulsed laser beam to restore the original pulse width for transmission.
Abstract:
A cutting machine secures safety of a worker during movement of a head without lowering production efficiency. When moving a cutting head without cutting material to be cut upon a table, a moving truck and the cutting head are moved at a higher speed as compared with when cutting the material to be cut. If, when the moving truck and the cutting head are moving at high speed, a worker who is present upon the table intercepts either of light beams which are located in front of and behind a horizontal beam, then this movement speed is decelerated to a safe low speed, but the task of cutting the material is not interrupted. Subsequently, when the worker approaches the horizontal beam closer, and contacts a wire or a bar in the vicinity of the horizontal beam, movement of the moving truck and the cutting head is forcibly stopped.
Abstract:
In a device for material processing by laser radiation, including a source of laser radiation emitting pulsed laser radiation for interaction with the material; optics focusing the pulsed processing laser radiation to a center of interaction in the material and a scanning unit shifting the positions of the center of interaction within the material. Each processing laser pulse interacts with the material in a zone surrounding the center of interaction assigned to the laser pulse so that material is separated in the zones of interaction. A control unit controls the scanning unit and the source of laser radiation such that a cut surface is produced in the material by sequential arrangement of zones of interaction. The control unit controls the source of laser radiation and the scanning unit such that adjacent centers of interaction are located at a spatial distance a≦10 μm from each other.
Abstract:
A method and system increase processed specimen yield in the laser processing of target material that includes multiple specimens formed on a common substrate. Preferred embodiments implement a feature that enables storage in the laser processing system a list of defective specimens that have somehow been subject to error during laser processing. Once the common substrate has been completely processed, the system alerts an operator to the number of improperly processed specimens and gives the operator an opportunity to run a software routine, which in a preferred embodiment uses a laser to scribe a mark on the top surface of each improperly processed specimen.