Abstract:
Provided is a method comprises: continuously forming an elongated, glass film having marginal portions from molten glass into a given shape having two marginal portions, in width-directional opposite edge regions thereof, wherein the glass film having marginal portions has the marginal portions, and an effective portion formed in a width-directional central region of the glass film having marginal portions; annealing the glass film having marginal portions; continuously forming resin tapes on the glass film having marginal portions at positions adjacent to and away by a given distance from the respective marginal portions, to extend in a length direction of the glass film having marginal portions; and continuously removing each of the marginal portions from the glass film having marginal portions, along a position between the marginal portion and a corresponding one of the resin tapes, or at a given width-directional position within the corresponding resin tape.
Abstract:
Presented are multilayer composite panels for motor vehicles, methods for making/using such panels, and motor vehicles with transparent composite roof panels having localized reinforcement features. A sandwich-type multilayer composite panel contains one or more exterior layers each including a transparent rigid material, one or more bonding layers each including a transparent adhesive material, and one or more structural reinforcement layers each including a fiber-reinforced polymer material. Each structural reinforcement layer may be attached directly to a bonding layer and/or exterior layer. The composite panel may also include one or more IR-reflective layers, one or more light-absorbing sunshade layers, and one or more insulating low-k layers. The multilayer body panel has a plan-view profile; the individual layers extend substantially the entire length and width of the plan area, whereas the fibers in each structural reinforcement layer are localized to one or more discrete regions within the plan-view profile.
Abstract:
The present invention refers to a blast-resistant bulletproof window and a corresponding apparatus, in particular for use in a motor vehicle, which comprises a ballistic block having a peripheral edge and a plurality of panes of glass, ceramic or plastic material bonded to each other over their surfaces in a layered composite, and interposed bonding interlayers plastic material or adhesive, wherein at least one edge groove with particularly rectangular cross section is provided on and along at least a part of the peripheral edge, and an edge recess is provided on an inside surface of the ballistic block or window on and along at least a part of the peripheral edge of the window.
Abstract:
The transparent window is suitable for use in applications that require a host of very demanding performance criteria. In the window, a transparent polymer is chemically bonded to an adhesive at an interface between the two, which enables the window to resist delamination. The window also has a polymer or plastic strike face with a coating that enables it to endure rigorous field conditions and still pass critical rock strike tests. The window also has a bulk layer with at least one layer of a glass, glass-ceramic, or transparent ceramic material.
Abstract:
A sliding window assembly for a vehicle includes a frameless fixed portion having first and second glass window portions and includes a sliding portion having a glass window panel. The sliding window assembly is a horizontal sliding window assembly and is configured for mounting at an opening of a bodywork of the vehicle. Upper and lower track members are adhesively attached at the rear surface of the first and second fixed glass window portions and no portion of the upper and lower track members is in contact with the front surface of the first and second fixed glass window portions. A glide member is longitudinally movable along the lower track member to facilitate movement of the glass window panel between its opened and closed positions. The fixed portion is adhesively bonded to the bodywork at a frameless periphery of the fixed portion that faces the interior of the vehicle.
Abstract:
The invention relates to a special array of materials located on the periphery of a glass armored composition (BRG), with the purpose of having a controlled deformation zone being able to absorb residual energy of impacts made on the edge of the armored piece, therefore providing an effective retention of the projectile and of the glass fragments generated by the impact. The invention provides superior ballistic protection for BRGs destined for automobile applications, for fixed and mobile pieces.
Abstract:
A rear sliding window assembly suitable for use in a vehicle includes a fixed portion and a sliding portion and upper and lower track members disposed at a surface of first and second fixed glass portions. The sliding portion comprises a glass window panel and is laterally movable between the upper and lower track members relative to the fixed portion. The glass window panel is movable between an opened position and a closed position, and the glass window panel is disposed at the gap that is between the first and second fixed glass window portions when at its closed position. A glide member is longitudinally movable along the lower track member to facilitate movement of the glass window panel between its opened and closed positions. A sealing member is disposed between the fixed portion and the sliding portion at least when the glass window panel is at its closed position.
Abstract:
Bonded vehicular glass assemblies utilizing two-component urethane adhesives to attach dynamic load-bearing attachment members to glass substrates to form a joint suitable for use on a vehicle, and related methods of forming are described herein. In addition, methods of attaching components to glass by use of these adhesives are disclosed. The method of forming the assemblies may include priming the glass panel prior to applying the adhesive to the primed glass panel and/or attachment member. The method may include allowing the urethane adhesive to cure to form a layer of cured urethane adhesive bonding the attachment member to the first surface of the glass panel without exposure of the bonded attachment member on the second surface of the panel. The cured adhesive layer disposed between the attachment member and the glass panel may have a thickness in the range from about 0.25 mm to about 2.0 mm.
Abstract:
The invention relates to a ballistic resistant laminated structure comprising at least three glass sheets (1, 3, 5) a polycarbonate sheet (11) which are bound by adhesive layers (2, 4, 10) and a shielding insert (20), wherein a space delimited by said insert (20), the end face of the sheet (5) and the edge of the sheet (11) are provided with a material (30, 31) for absorbing the energy of a projectile. Said materials (30, 31) are embodied in the form of an yielding material (30) for degassing during assembling said stricture and an encapsulating material (31). A highly ballistic resistant glazing for a building or a transport vehicle comprising the inventive structure is also disclosed.
Abstract:
A composite article comprises a first glass layer, a silicone layer, a second glass layer, and an organic layer. The silicone layer is disposed adjacent to the first glass layer. The silicone layer includes a cured silicone composition. The second glass layer is disposed adjacent to the silicone layer, spaced from and substantially parallel to the first glass layer. The organic layer is disposed adjacent to the second glass layer, spaced from and substantially parallel to the silicone layer. The organic layer includes a cured organic composition. A method of making a composite article including a first glass layer and a polymeric layer disposed adjacent to the first glass layer includes providing a dual-compartment chamber. The chamber includes a first compartment and a second compartment separated by a polymeric separator. The separator can be manipulated through pressure differentials between the compartments. Pressure is applied to at least one of the silicone layer and the first glass layer with the polymeric separator.