摘要:
Poly-(caffeyl alcohol) (PCFA), also known as C-lignin, is a promising new source of both carbon fibers and pure carbon. PCFA can be used to produce carbon fibers by direct electrospinning, without blending with another polymer to reduce breakage. Analyses have shown that the carbon obtained from PCFA is superior to that obtained from other lignins. The fibers formed from PCFA are smoother, have a narrower diameter distribution, and show very low defects. The PCFA can be obtained by extraction from plant seed coats. Examples of these plants include the vanilla orchid, Vanilla planifolia, and Jatropha curcas. The fibers may be formed through electrospinning, although other methods for forming the fibers, such as extrusion with a carrier polymer, could be used. The fibers may then be carbonized to increase the carbon yield.
摘要:
Disclosed are methods that utilize the differences in physical properties between two coating fluids to form core-shell particles or core-shell fibers by coaxial free-surface electrospinning. The methods are able to achieve higher productivity than known methods, and are tunable. Nonwoven fiber mats of electrospun fibers have garnered much scientific and commercial interest in recent years due to their unique properties, such as their high porosity, high surface area and small diameter fibers.
摘要:
The present invention relates to an electrospinning device for manufacturing a nanofiber, and the purpose of the present invention is to provide an electrospinning device for manufacturing a nanofiber, wherein a substrate is transferred while a nanofiber web is stacked and formed on a side surface of the substrate through electrospinning of a polymer spinning solution, and the substrate is rotated during transfer such that the nanofiber web is stacked and formed on the other side surface; accordingly, the nanofiber web can be stacked and formed on both surfaces of the substrate through a single manufacturing process; a drying process is performed simultaneously during rotation of the substrate such that, at the same time the nanofiber web is stacked on both surfaces of the substrate, the substrate is dried through a single manufacturing process, thereby removing any solvent remaining on the nanofiber web; and, as electrospinning devices, electro-blown electrospinning devices and electro-spinning electrospinning devices are installed alternately, such that electro-spinning electrospinning and electro-blown electrospinning can be performed alternately with regard to a transferred substrate.
摘要:
The purpose of the present invention is to provide an electrospinning device for manufacturing a nanofiber, the device comprising multiple units arranged successively, wherein units for ejecting a hot melt and units for ejecting a polymer spinning solution are installed alternately, the hot melt is ejected onto a substrate from nozzle blocks of the hot melt units positioned on the front end, and the polymer spinning solution is electrically spun onto the substrate, to which the hot melt has been ejected, from nozzle blocks of the spinning solution units positioned on the rear end, thereby stacking a nanofiber web. Accordingly, the nanofiber web can be easily attached to the substrate; the device is applicable both to an upward electrospinning device and a downward electrospinning device; the holt melt is not only ejected separately from the polymer spinning solution but also is repeatedly ejected to specific areas and parts on the substrate, thereby substantially reducing use of the hot melt; interference of the hot melt with the nanofiber web is minimized concurrently with substantially reducing use of the hot melt, thereby improving the performance and quality of the nanofiber or the nanofiber filter; the hot melt can not only be ejected onto the substrate through each unit, but the same or different kinds of polymer spinning solutions can be electrically spun, thereby manufacturing various materials and kinds of nanofibers and nanofiber filters, and enabling mass production of nanofibers and nanofiber filters.
摘要:
Fibers having two or more alternating polymer layers are formed by co-extrusion followed by electroprocessing. The fibers can be used as a non-woven mat or other substrate for a variety of applications. Delamination of the fibers using ultrasonication yields separated, micro and nanolayer, fiber ribbons which may also be used a non-woven mat or other substrate.
摘要:
The present invention relates to a biomimetic matrix for providing structural support and scaffolding that allows for regeneration of dentin, pulp, and periodontal tissues. A method of making the biomimetic matrix provides the ability to select both a size of a pore or tubule formed in the biomimetic matrix and a density of pores or tubules disposed throughout the biomimetic matrix. The present invention discloses an approach of successful tubular dentin regeneration both in vitro and in vivo using the biomimetic matrix.
摘要:
A method of forming a metal structure. The method comprises providing a dispersion of metal nanoparticles and a solution comprising a transient polymer and solvent. The dispersion of metal nanoparticles and the solution are formed by coaxially electrospinning into a fiber comprising the metal nanoparticles and the transient polymer. The fiber is heated to decompose the transient polymer and form a metallic structure.
摘要:
Disclosed herein is a spunbond fiber of visbroken polypropylene having an Mw/Mn of from 3.5 to 7.0, an Mz/Mw of from greater than 2.0 and a melt flow rate (230/2.16) of from 50 to 100 dg/min. Also disclosed is a process for producing spunbond fibers comprising melt blending a polypropylene having a melt flow rate (230/2.16) of from 10 to 30 dg/min with a peroxide visbreaker such that the resulting melt flow rate of the visbroken polypropylene is from 50 to 100 dg/min; melt extruding the visbroken polypropylene through a die block such that filaments of the visbroken polypropylene being produced are exposed to a cabin pressure of from 4500 to 7000 Pa; and forming fibers of from less than 6.0 denier. Nonwoven fabrics and multiple-layer structures can be made from the fibers described herein that are useful for filtering and absorption related articles.
摘要:
The disclosed subject matter describes systems and methods of electrospinning a fiber for a variety of applications. An exemplary embodiment includes a medical device application for delivering a therapeutic agent, such as a sclerosing agent, to the walls of a blood vessel to perform sclerotherapy. A method of fabricating a medical balloon comprises charging a polymer material with an electric voltage, dispensing the charged polymeric material through a nozzle, collecting the charged polymeric material on a grounded mandrel, wherein the mandrel includes a tubular body having a plurality of openings extending through the tubular body, and forming an electrospun medical balloon defined by a body having a varied thickness.