Abstract:
A steel cord for reinforcing rubber articles in which sheath wires are not deviated and which has an excellent rubber penetration property and a tire which has an excellent durability using the steel cord is provided.A steel cord for reinforcing rubber articles composed of a core 10 composed of two untwisted steel wires 1 and six sheath wires 2 which are twisted around the core 10 is disclosed. The average of gap distances between the adjacent sheath wires 2 is 24 μm or larger, and the occupancy of the sheath wires 6 disposed around the core 10 with respect to a sheath wire disposition area is 80% or larger. A pneumatic tire in which the steel cord is applied on both a carcass and (a) belt layer(s) or applied on either the carcass or the belt layer(s) is also disclosed.
Abstract:
A metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d, wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), said cord being characterized in that it has the following characteristics (d1, d2, p1 and p2 being in mm): 0.08
Abstract:
A cord obtained by twisting a plurality of strands each composed of a plurality of filaments is provided. A circumferential surface of the filament is coated with unvulcanized rubber to improve rubber intrusion, thereby improving corrosion resistance and suppressing twisting-loss.
Abstract:
The present invention provides a prestressing strand that has higher strength and is more suitable for practical use than known prestressing strands, and a concrete construction using the prestressing strand.The prestressing strand that has higher strength and is more suitable for practical use than known prestressing strands has a seven-wire structure in which one core wire and six outer wires are stranded and can be made by adjusting the external diameter to 15.0 mm to 16.1 mm, the total cross-sectional area to 135 mm2 or more, and the load at 0.2% or 0.1% permanent elongation to 266 kN or more.
Abstract:
Elastic metal/textile composite cord (C-1) having two layers (Ci, Ce) of 1+N construction, formed from a core or inner layer (Ci) comprising a textile core thread (10) of diameter d1 and a metal outer layer (Ce) of N wires (12) of diameter d2 wound together in a helix with a pitch p2 around the layer Ci, said cord being characterized in that it has the following characteristics (p2 in mm): As>1.0%; At>4.0%; Af>6.0%; d1>1.1d2; 4
Abstract:
A metal cord includes at least one preformed elementary metal wire. The metal cord has an elongation at break, measured on the bare cord, higher than or equal to 3%, preferably 4% to 6%; an elongation at break, measured on the rubberized and vulcanized cord, which differs in an amount not higher than or equal to 15%, preferably 2% to 10% with respect to the elongation at break measured on the bare cord; a part load elongation, measured on the bare cord, higher than or equal to 0.4%, preferably 0.5% to 1.5%; a part load elongation, measured on the rubberized and vulcanized cord, which differs in an amount not higher than or equal to 15%, preferably 0.5% to 10%, with respect to the part load elongation measured on the bare cord.
Abstract:
An annular metal cord includes an annular core portion formed in an annular shape, and an outer layer portion spirally wound around the annular core portion while running over an annular circumference thereof plural times and covering an outer peripheral surface of the annular core portion. Each of the annular core portion and the outer layer portion are formed by a strand material which is formed by intertwisting a plurality of metal filaments. At least part of the outer layer portion is covered with an outer layer sheath made of a coating material having elasticity.
Abstract:
An annular metal cord and an endless metal belt are provided which have superior breaking strength and which are easy to be produced.The annular metal cord includes an annular core portion 3 and an outer layer portion 4. The annular core portion 3 is formed by connecting together both ends of a first strand material 1 which is made up of six twisted first metal filaments 5. The outer layer portion 4 is formed by winding spirally a second strand material 2 which is made up of six twisted second metal filaments 6 around the annular core portion 3. The second strand material 2 is wound at a predetermined winding angle relative to a center axis of the annular core portion 3, and a winding initiating end portion and a winding terminating end portion thereof are connected together. Since it is not that six second strand materials 2 are not wound but that the second strand material 2 is wound six rounds, there only has to be the single second strand material 2, and there is only one connecting portion. As a result, the breaking strength of the annular metal cord can be made large, and the production thereof can be facilitated.
Abstract:
An object of the present invention is to impart long-lasting, stable corrosion resistance to an annular core of an annular concentric-lay bead cord at a low cost.Corrosion-resistant coating is provided on the surface of the steel wire forming the annular core 1 to cover the surface of the steel wire with a thick coating film 3, thereby preventing exposure of the surface of steel wire even if fretting develops between the annular core 1 and the wrap wire 2. With this arrangement, it is possible to impart long-term, stable corrosion resistance to the annular core 1 at a low cost.
Abstract:
A method of manufacturing a rubber reinforcing steel cord is provided, wherein the steel cord has a steel wire plated with metal containing copper and having on its surface an oil layer containing a cobalt compound, and includes an application step in which the oil containing a cobalt compound is applied to the steel wire or a steel cord plated with metal containing copper, and a step of twisting the steel wires.