Optimized waveguide structure
    81.
    发明授权
    Optimized waveguide structure 失效
    优化波导结构

    公开(公告)号:US5719976A

    公开(公告)日:1998-02-17

    申请号:US547767

    申请日:1995-10-24

    Abstract: An optimized waveguide structure enables the functional integration of various passive optic components on a single substrate. The optimized waveguide structure is characterized by a thicker core layer than used for square core waveguides and a core width that changes according to different functional regions of the optic circuit within which it is incorporated. The height (H) of the waveguide core is determined by the thickness of the core layer defined during the fabrication process and is ideally uniform across the circuit. The width (W) of the core, however, is changed between functional regions by the photo-lithographic mask and the chemical etching during the fabrication process. By way of example, an optimized waveguide structure for a P-doped silica planar waveguide with a .DELTA. approximately 0.6% for wavelength .lambda.=1.2-1.7 .mu.m, has a single uniform height of H=6.7 .mu.m and a width that changes between W=4 .mu.m in a coupler region, W=5.5 .mu.m in a bend region, W=9 .mu.m in a fiber coupling region, and W=10 .mu.m in a phase grating region of a Dragone router. Adiabatic tapers are used as transition regions between regions of different core widths.

    Abstract translation: 优化的波导结构使得能够在单个基板上的各种无源光学元件的功能集成。 优化的波导结构的特征在于比用于方芯波导的核心层更厚,并且根据其所结合的光电路的不同功能区域而变化的芯宽度。 波导芯的高度(H)由在制造过程中限定的芯层的厚度确定,并且在整个电路上理想地是均匀的。 然而,通过光刻掩模和制造过程中的化学蚀刻在功能区域之间改变芯的宽度(W)。 作为示例,用于波长λ=1.2-1.7μm的DELTA约0.6%的P掺杂二氧化硅平面波导的优化波导结构具有H =6.7μm的单一均匀高度,并且宽度在 在耦合器区域中W =4μm,在弯曲区域中W =5.5μm,在光纤耦合区域中W =9μm,在Dragone路由器的相位光栅区域中W =10μm。 绝热锥度用作不同芯宽的区域之间的过渡区域。

    Optical waveguide employing modified gallium arsenide
    83.
    发明授权
    Optical waveguide employing modified gallium arsenide 失效
    使用改性砷化镓的光波导

    公开(公告)号:US5491768A

    公开(公告)日:1996-02-13

    申请号:US281386

    申请日:1994-07-27

    Applicant: Kam T. Chan

    Inventor: Kam T. Chan

    CPC classification number: G02F1/025 G02B6/1347 G02B2006/12169 G02F2202/101

    Abstract: In an optical waveguide fabrication process, medium weight, relatively stable ions, such as oxygen ions, are implanted, preferably in a multiple-step, multiple-energy level process, into GaAs, InP or other like III-V materials and heterostructures and then annealed by radiant heat, in order to produce a structure with an elevated index of refraction without restriction on the carrier concentration or resistivity of the stock wafer by the presumed generation of stable crystalline defects in the implanted region. The ions used for implantation should not generate free carriers once implanted.

    Abstract translation: 在光波导制造工艺中,将中等重量的相对稳定的离子,例如氧离子,优选以多步多能级过程注入到GaAs,InP或其它类似III-V材料和异质结构中,然后 通过辐射热退火,以便产生具有升高的折射率的结构,而不受限于植入区域中稳定的晶体缺陷的假定的原料晶片的载流子浓度或电阻率。 用于植入的离子一旦植入就不应产生自由载体。

    Energy transmission
    85.
    发明授权
    Energy transmission 失效
    能量传输

    公开(公告)号:US4240692A

    公开(公告)日:1980-12-23

    申请号:US641557

    申请日:1975-12-17

    Applicant: Roland Winston

    Inventor: Roland Winston

    Abstract: Disclosed are radiant energy transmitting devices operative selectively in concentrative and emissive modes, having transmitting elements including radiant energy transmitting and guiding surfaces at the interface of media of differing indices of refraction for radiant energy. Surfaces generally are of a concavely sloping configuration consistent with reflecting, for example, extremal energy rays entering the element from within a defined field of acceptance at an energy inlet onto an energy trap or, in the alternative, extremal rays from an energy source through an energy outlet within a defined field of emission. The energy source or trap is preferably an energy transducer such as a photoelectric device.

    Abstract translation: 公开了以集中和发射模式选择性地工作的辐射能传输装置,其具有发射元件,其包括辐射能传输和引导表面,用于辐射能的不同折射率的介质的界面。 表面通常具有凹入的倾斜构造,其与在能量入口处的限定的接受界面中反射例如进入元件的极限能量射线一致,或者在可选择的情况下,反射来自能量源的极光射线 能量出口在规定的发射场内。 能量源或阱优选为诸如光电装置的能量换能器。

    Silicon photonic fiber and method of manufacture
    89.
    发明授权
    Silicon photonic fiber and method of manufacture 有权
    硅光子纤维及其制造方法

    公开(公告)号:US09546094B2

    公开(公告)日:2017-01-17

    申请号:US14333843

    申请日:2014-07-17

    Abstract: Methods of converting silica to silicon and fabricating silicon photonic crystal fiber (PCF) are disclosed. Silicon photonic crystal fibers made by the fabrication methods are also disclosed. One fabrication method includes: sealing silica PCF and a quantity of magnesium within a container, the quantity of magnesium defined by 2Mg(g)+SiO2(s)→2MgO(s)+Si(s); converting silica PCF to a reacted PCF through magnesiothermic reduction; and converting the reacted PCF to the fabricated silicon PCF by selective dissolution of the reacted PCF in an acid. Another fabrication method includes: adding silica PCF and a quantity of solid magnesium to an unsealed container, the quantity of magnesium substantially in excess of that defined by 2Mg(g)+SiO2(s)→2MgO(s)+Si(s); converting silica PCF to a reacted PCF through magnesiothermic reduction; and converting the reacted PCF to the fabricated silicon PCF by selective dissolution of the reacted PCF in an acid.

    Abstract translation: 公开了将二氧化硅转化为硅并制造硅光子晶体光纤(PCF)的方法。 还公开了通过制造方法制造的硅光子晶体光纤。 一种制造方法包括:将二氧化硅PCF和一定量的镁密封在容器内,由2Mg(g)+ SiO 2(s)→2MgO(s)+ Si(s)定义的镁的量; 通过氧化镁还原将二氧化硅PCF转化为反应的PCF; 并通过将反应的PCF选择性溶解在酸中将反应的PCF转化成制造的硅PCF。 另一种制造方法包括:将二氧化硅PCF和一定量的固体镁添加到未密封的容器中,镁的量基本上超过由2Mg(g)+ SiO 2(s)→2MgO(s)+ Si(s)限定的镁; 通过氧化镁还原将二氧化硅PCF转化为反应的PCF; 并通过将反应的PCF选择性溶解在酸中将反应的PCF转化成制造的硅PCF。

Patent Agency Ranking