Abstract:
A preferably fully impregnated dispenser cathode member or the like forming part of an electron tube, electron beam generator or the like is initially heated by any suitable means to a temperature sufficient for low level electron emission from its rear surface. A hot plate member of preferably equal size is disposed behind the cathode and can either be part of or the means for initially heating the cathode member or it can be heated with the cathode member to the aforementioned cathode member's rear surface low level emission temperature. A sustainer voltage is applied between the cathode member and the hot plate member sufficient to draw a current comprising electron flow from the cathode member to the hot plate member across the space separating them. This current flow or back electron beam results in heating of the hot plate member to a temperature sufficient to raise the closely spaced cathode member to, and then maintain it at, the desired emission temperature and simultaneously allow timely termination of the initial heating process since it is needed only initially.
Abstract:
A method and apparatus for transforming an obscured beam into a uniform intensity pattern at the image plane of the apparatus are described. Apparatus for carrying out the invention comprises two on-axis optical elements which are designed for stigmatic imaging of an incoming obscured parallel laser beam. The first element, a paraboloid mirror, forms an imaginary stigmatic image of the beam at its focal point. The second element, a multi-faceted mirror, comprises identical flat facets disposed on an ellipsoid envelope. The ellipsoid conjugates the focal point of the paraboloid and the image plane. Selection of an image shape and dimension defines the shape and dimension of the facets. Each facet's contribution to the image is a full scale centered spot. The contribution of each facet add up to form a final uniform image. Slight variation of the image dimension, from facet to facet, allows a roll-off of the image and compensates for diffraction ripples by the edges of the facets.
Abstract:
A rotary indexing device for indexing a member, such as a shaft, into operative working positions in which the shaft carries a plurality of indexing arms for selecting different working positions. Final positioning means for each indexing arm comprising a solenoid actuated, pneumatic operated pin for engaging the indexing arm and effects final adjustment of the indexing arm which is brought to approximately its proper position by a servo-motor. Means are also provided to provide positive confirmation that each step of the indexing operation has been properly completed to insure that the shaft has been rotated to and is in its proper position.
Abstract:
Properties of the surface of low melting substrate parts including low melting, high conductivity reactive metal parts, are modified by forming an alloy casing thereon having the metal of the substrate as a first (matrix) component thereof together with a higher melting material as the second (reinforcing) component. The higher melting component is coated on the substrate, melted under laser heating, with gas shielding to avoid oxidation, and mixed with a melted portion of the substrate through convective circulation and the mixture is rapidly cooled to produce the alloy casing. Then the casing may be rescanned with the laser beam to rapidly melt and resolidify the casing with refined grain structure. Such grain refining may also be applied to uncoated substrates.
Abstract:
In an apparatus for treatment of a process flow by beams of ionizing radiant energy, drag elements are provided for slowing flow velocity to achieve equal treatment of all portions of the process flow.
Abstract:
A process and apparatus for gasification of carbonaceous matter, preferably coal, is disclosed. A stream of previously produced char, preferably produced from coal, or other fuel together with an oxidizer and steam is introduced into a first or combustion stage. The combustion gas produced by the combustion passes into a second or gasification stage and through a nozzle at at least sonic velocity. Pulverized carbonaceous matter, preferably coal, is introduced and dispersed in the combustion gas in the gasification stage. The temperature, velocity and velocity changes principally of the gas in the gasification stage are controlled to provide a heating rate for the particles of pulverized carbonaceous matter of at least about 10.sup.5 degrees Kelvin per second, and to effect rapid removal of volatile components from the immediate vicinity of the particles. Upon substantial gasification of the particles in the gasification stage, the resultant product stream may be quenched, the char removed, and preferably at least a portion thereof introduced into the combustion stage.
Abstract:
A process and apparatus for gasification of carbonaceous matter, preferably coal, is disclosed. In one embodiment, a stream of previously produced char, preferably produced from coal or other fuel, together with an oxidizer and steam is introduced into a combustion stage. The combustion gas produced by the combustion passes into a mixing zone and thence with high turbulence into a gasification zone or stage at subsonic velocity. Pulverized carbonaceous matter, preferably coal, is introduced and dispersed in the combustion gas in the mixing zone. The temperature, velocity and velocity changes principally of the gas in the gasification zone or stage are controlled to provide a heating rate for the particles of pulverized carbonaceous matter of at least about 10.sup.5 degrees Kelvin per second, and to effect rapid removal of volatile components from the immediate vicinity of the particles. Upon substantial gasification of the particles in the gasification stage, the resultant product stream may be quenched, the char removed, and preferably at least a portion thereof introduced into the combustion stage.
Abstract:
Apparatus for and method of operating a laser wherein a discharge is produced preferably in a high pressure lasing gaseous mixture comprising at least one suitable first gaseous species capable of providing an excited state which has a finite probability of being ionized and a molecular second gaseous species having a capability for attaching electrons to form negative ions. The gaseous mixture may, for example, comprise argon, neon, helium, xenon, krypton or a metal vapor such as mercury as the first species and, for example, hydrogen iodide, carbon tetrachloride, bromine, iodine or fluorine as the second species. A buffer gas such as, for example, argon, helium or neon may also be used. The discharge is produced by means of an electron beam and an electric field. The discharge resulting from the application of the electric field heats secondary electrons produced by the electron beam to an energy level sufficient to make excited states. Thus, for a mixture comprising argon, krypton and fluorine, for example, the heated secondary electrons pump at least some of the argon and the krypton to the metastable state. The excited argon transfers energy to the krypton to form additional excited krypton which, in turn, reacts with the fluorine to form excited krypton fluoride molecules. The krypton fluoride then dissociates or decays upon the emission of spontaneous or stimulated radiation. At power input levels where the electron density remains constant in time for a constant electric field, efficient discharge pumping of the excited states is provided when the fractional excited state population is kept small. Stable discharge operation is achieved when the lasing mixture contains an amount of the second species gas sufficient to provide an attachment rate n times the equilibrium ionization rate where n is the number of electron excitations which causes ionization of the first species.
Abstract:
This invention relates to apparatus and methods for providing a high-density memory for electrical data and more particularly, to such a memory wherein data are represented by patterns of charge written and read by electron beam means at addressed locations.
Abstract:
Method of and apparatus for non-equilibrium chemical kinetic separation of deuterium from hydrogen are described wherein hydrogen with its normal abundance of deuterium and an appropriate reactant, bromine, are supplied to a deuterium reaction vessel wherein they are vibrationally excited by, for example, being exposed to a volumetrically scalable ionizing-sustainer electrical discharge effective to provide vibrational excitation of the H.sub.2 and HD following which selective intermolecular vibration-vibration energy pumping occurs giving conditions effective to produce an HBr/DBr product mixture. The ionizing-sustainer discharge is effective to generate vibrational excitation from which follows chemical reactions that produce DBr and HBr at such relative rates that the mixture is enhanced in deuterium content relative to said content of the entering hydrogen stream. For the production of heavy water, the DBr and HBr are then dissolved in water. This water is then reacted with oxygen to chemically separate the bromine and the bromine is removed to leave water enriched in deuterium. Additional DBr/HBr product mixture is then dissolved in this deuterium enriched water and the process repeated to produce water having the deuterium content of the product DBr/HBr.